Dies ist ein als lesenswert ausgezeichneter Artikel.

Geschichte der Geologie

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 26. August 2005 um 20:54 Uhr durch AF666 (Diskussion | Beiträge) (→‎Weblinks). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Im Gegensatz zur Historischen Geologie, die sich mit der Entwicklungsgeschichte der Erde befasst, geht es bei der Geschichte der Geologie um die Geschichte der Wissenschaft selbst. Hierbei kommt es zu Überschneidungen mit der Geschichte anderer Geowissenschaften, wie Mineralogie, Petrographie und Paläontologie.

Antike

Die Ursprünge der Geologie speisen sich aus zwei recht unterschiedlichen Quellen: einerseits aus den praktischen Kenntnissen der Erzsucher, Bergleute und Metallurgen, andererseits aus den allerersten Keimen der abendländischen Philosophie. Es war Thales von Milet (um 624 - um 546 v. Chr.), der Begründer der ionischen Naturphilosophie, der als erster versucht hat, die alten mythologischen Vorstellungen über die Erde durch rationale Erklärungen zu ersetzen. Nicht mehr den grollenden 'Erderschütterer' Poseidon machte er für die Entstehung der Erdbeben verantwortlich, sondern die Bewegungen der auf dem Urwasser schwimmenden Erdscheibe. Ebenso scheint Thales durch die Sedimentation von Sandbänken an der Mündung großer Flüsse, oder die Ausfällung von Mineralen am Rand heißer Quellen, zu seiner These gelangt zu sein, dass alle Dinge aus dem Wasser entstanden seien.

Anaximandros (um 610 - um 546), zeichnete nicht nur die erste Karte der bewohnten Welt, sondern dehnte Thales Vorstellungen auch auf die belebte Welt aus. Er lehrte, dass die Lebewesen aus der Feuchtigkeit entstanden seien, die unter der Einwirkung der Sonne verdunstet. Die Menschen hätten sich dann aus fischartigen Lebewesen entwickelt. Natürlich ist es reiner Zufall, dass heute wieder diskutiert wird, ob sich die ersten Bausteine des Lebens ('Ursuppe') im Meer gebildet haben, oder ob sie sich nicht eher in heißen, mineralgesättigten Wasserlöchern konzentriert hätten. Dennoch greift Anaximandros' erstaunliche These der modernen Evolutionstheorie um mehr als 2400 Jahre voraus. Schließlich erwägt er als erster Denker einen natürlichen Entwicklungsprozess der Lebewesen. Auf jeden Fall zeigt sie, dass ihm das Phänomen der Ausfällung von Meersalz durch Sonneneinstrahlung (Evaporation) bekannt war.

Datei:Fossil-insekten1.jpg
Fossile Insekten

Xenophanes von Kolophon (um 570 - um 470) deutete erstmalig die Abdrücke von Muscheln und anderen Seetieren in meeresfernen Landstrichen als die Überreste von versteinerten Lebewesen (Fossilien). Ihre Lage erklärte er damit, dass sich die Gebirge einstmals aus dem Meer gehoben hätten. Ebenso erkannte er die voranschreitende Erosion an den Küsten. Aus diesen beiden Prozessen schloss er auf große Zyklen, in denen sich Gebirgsbildung und Erosion abwechselten. Bei der Zerstörung der Festländer werde dabei jedes Mal die jeweilige Menschheit vernichtet.

Interessanterweise galten alle diese der Natur zugewandten Denkansätze schon im 4. vorchristlichen Jahrhundert wieder als überholt. Die griechische Philosophie widmete sich stattdessen vermehrt formallogischen und transzendenten Problemen. Während die Pythagoreer in Süditalien die Mathematik in eine geheime Mysterien-Religion verwandelten, beschränkten sich die Sophisten auf Übungen in Grammatik, Dialektik und Rhetorik. Die Vorstellungen über die Entstehung der Gesteine und Metalle bewegten sich bald nur noch im Bereich der reinen Spekulation, die auf empirische Beobachtungen weitgehend verzichtete. Als z.B. Anaxagoras von Klazomenai (um 500 - 428) behauptete, die steinige Beschaffenheit der Himmelskörper sei durch den Fall des Meteoriten von Aigospotamoi bewiesen worden, brachte ihm das bereits eine Verurteilung wegen Gotteslästerung ein.

Platon (427 - 348) verband die Lehre von den vier Elementen des Empedokles mit den mathematischen Spekulationen der Pythagoreer über die geometrische Gestalt der Atome. Die Metalle und Minerale bestehen demnach nicht, wie die Steine und Erden, aus vermischten Elementen, sondern aus besonders verdichtetem 'schmelzbarem Wasser', sprich: besonders hart gefrorenem Eis.

Aristoteles

Aristoteles (384 - 322) vertrat in seinem Werk 'Meteorologia' die folgenreiche Lehre von der Umwandlung (Transmutation) der Elemente. Die Wandlung führte er auf das tiefe Eindringen der Sonnenstrahlen in den Erdkörper zurück. Aus den resultierenden trockenen Ausdünstungen entstünden demnach die Gesteine, und aus den feuchten Ausdünstungen die Metalle. Die Hebungen und Senkungen der Erdoberfläche, die Anschwemmung und Abtragung bewirken, waren ihm bekannt. Seiner Meinung nach beruhten sie auf dem langsamen, aber unregelmäßigen Alterungsprozess der Erde.

Solche Ansichten wurden von Theophrast, dem Schüler und Nachfolger Aristoteles, in seiner Schrift 'Über die Steine' zusammen gefasst. Danach galten sie, bis weit in die Neuzeit hinein, als allgemein verbindlich. In den späteren Steinbüchern wurden diese Theorien aber zunehmend mit Vorstellungen aus dem Orient vermengt, über die magisch-astrologischen und medizinischen Eigenschaften der Metalle und Edelsteine, aber auch mit praktischen Rezepten für die Fälschung von Gold, sowie zur künstlichen Herstellung von Glas und Farbstoffen. Hier darf man die Ursprünge der technischen Chemie sehen.

Die Entdeckung des spezifischen Gewichts von Gold, durch Archimedes von Syrakus (um 285 - um 212) in der Badewanne, gilt als die erste quantitative Messung in der Physik.

Die letzte große Zusammenfassung all dieses, mittlerweile schon sehr umfangreichen und widersprüchlichen, Materials unternahm Plinius der Ältere in seiner enzyklopädischen 'Naturalis Historia'. Bei dem Ausbruch des Vesuvs, der die Stadt Pompeji vernichtete, wagte sich Plinius aus Neugier zu nah an den Vulkan heran und erstickte an den austretenden Gasen. Diesem ersten Märtyrer der Geowissenschaften zu Ehren werden explosive Ausbrüche als plinianische Eruptionen bezeichnet.

Ansonsten wurden in der Antike nur noch wenige geologische Beobachtungen gemacht. Das Desinteresse beruhte v.a. auf der allgemeinen Geringschätzung von schmutziger Handarbeit. So blieb besonders das Gebiet der Angewandten Geologie, wie Bergbau und Lagerstättenkunde, ausschließliche Domäne von Sklaven und Handwerkern, die ihre praktischen Kenntnisse im besten Fall mündlich weiter gaben. Nur im biblischen Buch Ijob (Kap. 28, 1-19) findet sich eine kurze Schilderung über den (letztendlich unbefriedigten) Forscherdrang der Bergleute.

Mittelalter

Albertus Magnus; Fresko (1352), Treviso, Italien

Während in Europa nach dem Zusammenbruch des römischen Imperiums auch im Bergbau eine lange Zeit der Stagnation einsetzte, wurden im arabisch-muslimischen Kulturraum die antiken Vorstellungen über die Entstehung der Erze und Gesteine weiter entwickelt. Ibn Sina (latinisiert: Avicenna, um 980 - 1037), lieferte eine modern anmutende Klassifizierung des Mineralreiches in Salze, Schwefel, Metalle und Steine. Die gängige Lehre von der Umwandlung der Metalle lehnte er ab. Aus der geschichteten Form von Gesteinen schloss er auf ihre Entstehung durch Sedimentation, und die Bildung der Gebirge führte er auf die Wirkung von Erdbeben zurück. In seinen Vorstellungen von der Wirkung des Wassers stand Ibn Sina übrigens einem Orden (Tariqa) von Sufi-Mystikern nahe, die sich die 'Brüder der Reinheit' nannten. Diese lehrten, dass sich die Ozeane im Laufe langer Zeiträume mit Sedimenten aus den Bergen und Flüssen füllten. Schließlich flössen die Meere über und neues Material lagere sich auf den Festländern ab.

Solche antiken und arabischen Vorstellungen gelangten im 12. und 13. Jahrhundert nach Europa, wo sie die abendländischen Alchemisten inspirierten. Diese erklärten die Bildung der Metalle durch die konzentrierte Strahlung aller Planeten auf das Zentrum der Erde, das man sich wie einen riesigen, feurigen Schmelzofen vorstellte. Albertus Magnus (1200 - 1280) beschrieb die Bildung von Erzadern wie einen Destillations-Vorgang. Durch die Hitze des Erdinneren werden die feineren Bestandteile der feuchten Ausdünstungen in die natürlichen Poren und Risse der Erdkruste getrieben. Dort werden sie, ganz ähnlich wie im Hals einer Retorte, abgekühlt, ausgeschieden und konzentriert. Dies entspricht im Wesentlichen der modernen Theorie von hydrothermalen Ganglagerstätten.

Renaissance

Leonardo da Vinci

Leonardo da Vinci (1452 - 1519) entdeckte die organische Natur der Fossilien erneut, wobei er die Bedeutung der biblischen Sintflut für den Prozess klar verneinte. Ebenso verwarf er das, aus der Bibel errechnete, kurze Alter der Erde, und beobachtete die unterschiedliche Sedimentation von Sandkörnern in strömendem Wasser. Da Leonardo seine Notizbücher aber nie veröffentlichte, blieben seine Erkenntnisse praktisch wirkungslos.

Als Beginn der neuzeitlichen Geologie gilt deshalb das Werk des Georgius Agricola (1494 - 1555). Der Hauptteil seiner Schrift 'De re metallica libri XII' besteht aus detaillierten Beschreibungen der damaligen Bergbau- und Ingenieurskunst, über den Bau von Schmelzöfen, Herstellung von Soda, Schwefel und Alaun, Transport der Erze, Wind- und Wasserkraft, aber auch rechtlichen und administrativen Angelegenheiten. In den ersten Kapiteln gibt er aber auch viele praktische Hinweise für die Auffindung von Lagerstätten (Exploration) an Hand natürlicher Kennzeichen. Sein 'De natura fossilium' gilt als das erste Handbuch der Mineralogie, da die Klassifizierung der Minerale auf äußeren Merkmalen, wie Farbe, Glanz und Geschmack basiert. Agricola verwarf nicht nur die biblische These, dass sich alle Minerale im Moment der göttlichen Schöpfung geformt hätten, sondern auch die alchemistische Theorie über die Umwandlung der Metalle. Trotzdem sollten sich diese noch lange halten. Ein wichtiger Antrieb für die europäischen Entdeckungsreisen nach Übersee war z.B. die Vorstellung, dass sich das 'Sonnen-Metall' Gold besonders in den heißen, tropischen Regionen der Welt findet.

Die Wende zur Moderne

Was die Geologie von den meisten anderen Naturwissenschaften unterscheidet, ist v.a. der historische Ansatz. Die Minerale könnten ohne Weiteres von einem Chemiker klassifiziert werden, die Fossilien von einem Biologen. Die Eigenschaften des Erdkörpers könnte ein Physiker beschreiben, seine Gestalt ein Geograph. Der Geologe stellt aber nicht nur die Frage: "Was ist das?", sondern vor allem: "Wie wurde es, was es ist?"

Die ersten Schritte in die Richtung einer Erdgeschichte ging der dänische Arzt und Naturforscher Niels Stensen, latinisiert: Nicolaus Steno (1638 - 1687). Im Jahr 1669 entwarf er in der Toskana das erste geologische Profil, das wirklich historisch gedacht war. Mit der grundlegenden Erkenntnis, dass die unteren Gesteinsschichten auch die älteren sind, und die darüber lagernden, sukzessive immer jünger, entdeckte Stensen das stratigraphische Prinzip. Die Anordnung im Raum entspricht also in Wirklichkeit einer Abfolge in der Zeit. Außerdem postulierte Stensen, dass alle Schichten ursprünglich horizontal abgelagert wurden, und dass die Schichten nur nachträglich durch erdinnere Kräfte verstellt, zerbrochen und gefaltet werden können. Alle Abweichungen von dieser Regel bedürfen zwingend einer Erklärung. Ebenso begriff Stensen erneut die organische Natur der Fossilien, und erkannte, dass bestimmte Fossilien auch nur in bestimmten Schichten vorkommen. Damit bereitete er die Idee des Leitfossils vor. Als Mineraloge erkannte er das Gesetz der Winkelkonstanz in allen individuellen Kristallen eines bestimmten Minerals. Leider konvertierte dieser kreative Denker bald darauf zum Katholizismus, gab seine wissenschaftlichen Studien auf, und starb als bitterarmer Missionar im protestantischen Schwerin.

Stensens Zeitgenossen beschäftigte besonders das Problem, warum die Fossilien tief in die Gesteine eingebettet waren, anstatt auf der Oberfläche zu liegen. Ein Ausweg bestand darin, den organischen Ursprung der Fossilien einfach zu leugnen, und sie als spontane Bildungen und kuriose 'Naturspiele' abzutun, wie dies z.B Martin Lister (1638 - 1711) tat. Robert Hookes (1638 - 1703) Geistesblitz, dass man aus dem Fossilinhalt der Gesteine eine zeitliche Abfolge der sich verändernden Umweltbedingungen rekonstruieren könnte, wurde vorerst nicht weiter verfolgt.

Solche erdgeschichtlichen Ansätze wurden aber noch lange durch das Festhalten an der biblischen Zeitskala behindert. Das bekannteste Beispiel ist die Berechnung des Erzbischofs von Armagh (Irland), James Usher (1580 - 1656), der die Entstehung der Welt auf Montag den 23. Oktober 4004 v.C. datierte. Als einziges Ereignis, dass die Gestalt der Erde nach der Schöpfung noch wesentlich verändert haben konnte, galt die Sintflut. Sie wurde nicht nur für die Existenz von Fossilien fern des Meeres verantwortlich gemacht, sondern auch für die weit verbreiteten Geschiebe-Lehme. Diese in weiten Teilen Nord- und Mitteleuropas auftretenden Gesteine wurden erst im 19. Jahrhundert als Zeugnisse der letzten Eiszeit erkannt. Wegen der Ähnlichkeit der Küstenlinien von Afrika und Südamerika machte ein Theologe namens Lilienthal im Jahr 1736 die Sintflut sogar für das Auseinanderbrechen dieser Kontinente verantwortlich.

Die Geologie als moderne Wissenschaft

Im Laufe der Aufklärung ging der Glaube an die biblische Zeitskala nach und nach verloren, und man versuchte eine Brücke zu schlagen, zwischen den althergebrachten praktischen Kenntnissen der Bergleute und Metallurgen und den rein theoretischen Spekulationen eines Descartes, Leibniz oder Kant über die Entstehung der Erde. Damit vollzog die Geologie den Wandel von einer beschreibenden zu einer erklärenden Wissenschaft. Das Sammeln von Fossilien und Mineralen wurde in bürgerlichen Kreisen zu einer regelrechten Modeerscheinung, und Kenntnisse über geologische Merkwürdigkeiten galten als ein wichtiger Bestandteil der Allgemeinbildung.

Die ersten, die sich anschickten Hookes Idee über eine mögliche Erdgeschichte in die Tat umzusetzen, waren der preußische Bergrat Johann Gottlob Lehmann (1719 - 67) und der fürstliche Leibarzt Georg Christian Füchsel (1722 - 73). Dabei zogen sie aber eher die unterschiedliche Ausbildung der Gesteine (Lithologie) zu Rate, als den Fossilinhalt. In der Mitte des 18. Jahrhunderts fertigten sie die ersten Profilschnitte und geologische Karten an, die die Gesteinsschichten in den Bergbaurevieren von Thüringen repräsentierten.

Auch der toskanische Bergwerksdirektor Giovanni Arduino (1735 - 95) fertigte ein Profil des italienischen Alpenvorlands an. Dabei unterteilte er die Gesteine der Erdkruste in 'Primär', 'Sekundär', Tertiär und Quartär. Die letzten beiden Begriff sind noch heute gebräuchlich, die ersten beiden entsprechen etwa dem heutigen Paläozoikum und Mesozoikum. Außerdem erkannte er, dass die Fossilien in den jüngeren Schichten den heute lebenden Organismen immer ähnlicher werden.

Den Durchbruch in der grundlegenden Arbeitsmethode der geologischen Kartierung gelang jedoch dem Vermessungsingenieur und Kanalbauer William Smith (1769 - 1839). Fortan wurde er als 'Strata-Smith' ('Schichten-Smith') bekannt. 1815 veröffentlichte er seine monumentale, farbige Karte der Geologie von England und Wales, die sowohl den Fossilinhalt, als auch die Lithologie in Betracht zog. Diese Karte wurde richtungsweisend für alle späteren Projekte der jeweiligen nationalen Landesämter. Mit Hilfe solcher Karten ist es dem Geologen nicht nur möglich, die Verbreitung bestimmter Gesteine an der Oberfläche darzustellen, sondern auch ihre Lage im Untergrund vorherzusagen. Um so mehr man sich bewusst wurde, dass es sich bei den Gesteinsschichten auch um zeitliche Einheiten handelt, wurde die geologische Karte so zu einer komplexen Darstellung von vier Dimensionen (die drei des Raumes und die Zeit) in zwei Dimensionen.

Die Entwicklung der Geologie vollzog sich im Folgenden in einer Reihe von, z.T. äußerst heftigen, wissenschaftlichen Kontroversen. Die erste davon war der Streit zwischen den so genannten 'Plutonisten' und 'Neptunisten'.

Plutonismus und Neptunismus

Der Neptunismus hat Wurzeln, die bis zu Thales von Milet zurück reichen. Demnach bilden sich die Gesteine ausschließlich durch Sedimentation aus wässrigen Lösungen. Sein Hauptvertreter war der Leiter der neu gegründeten Bergakademie in Freiberg, Abraham Gottlob Werner (1749 - 1817). Vulkanische Phänomene erklärte er als unbedeutende, lokale Erdbrände, und die resultierenden Gesteine seien lediglich aufgeschmolzene Sedimente.

Kreislauf der Gesteine

Werners Gegenspieler war der schottische 'Gentleman-Farmer' James Hutton (1726 - 97). Der Plutonismus vertritt die Ansicht, dass der Ursprung aller Gesteine in magmatischen und vulkanischen Prozessen zu suchen ist. Geschmolzene Massen aus dem Erdinneren bahnen sich, von Zeit zu Zeit, ihren Weg nach oben und können sogar zur Oberfläche durchbrechen. Durch die Erosion werden diese Gesteine frei gelegt und wieder abgetragen, um auf den Festländern als Böden, und in den Ozeanen als Sedimente abgelagert zu werden. Durch das Gewicht immer neuer Sedimentlagen werden die älteren Schichten immer stärker verfestigt und schließlich, unter dem enormen Druck, wieder erhitzt und umgewandelt, bis sie schließlich wieder aufschmelzen. Diese Idee vom Kreislauf der Gesteine wird heute allgemein akzeptiert.

Verschiedene, überspitzte Ansichten der Neptunisten konnten in der Folge widerlegt werden, wie z.B. die Entstehung der Granite und Basalte als chemische Ausfällungen aus den Wassern eines heißen Urozeans. Deshalb wird besonders in der angelsächsischen Literatur gerne behauptet, die Plutonisten hätten die Kontroverse gewonnen. Man darf aber nicht vergessen, dass auch verschiedene Grundannahmen Huttons nicht gehalten werden konnten, wie die totale Leugnung der Existenz von chemisch ausgefällten Sedimenten, die Erklärung der Salzstöcke als magmatische Intrusionen, und besonders die Annahme der Wasserunlöslichkeit der Silikate. Ganz im Gegenteil spielt Wasser in allen magmatischen und metamorphen Prozessen eine unverzichtbare Rolle. An dieser Stelle sind Werners überhitzte, mineralgesättigte Lösungen (Solen), unter dem Namen Fluide, wieder in die Theorie zurück gekehrt.

Werners Verdienst war außerdem, dass an den Bergakademien nicht nur geforscht, sondern auch systematisch gelehrt wurde. Viele bedeutende Zeitgenossen, wie Alexander von Humboldt, Novalis oder Goethe (der wichtige Experimente über die Löslichkeit und Ausfällung von Kieselgur unternahm) besuchten die Vorlesungen und verbreiteten das Interesse an geologischen Problemen in der ganzen Welt.

Anfang des 19. Jahrhunderts begannen sich die verschiedenen losen Enden zusammen zu fügen. Die Schüler Werners machten auf ihren ausgedehnten Reisen Bekanntschaft mit unzweifelhaft vulkanischen Bildungen, wie der Auvergne in Frankreich, oder der Eifel, und modifizierten ihre Ansichten entsprechend. Andererseits versuchte man die verschiedenen 'Gebirgs-Formationen' mit den benachbarten stratigraphischen Abfolgen, wie sie in Thüringen, im Pariser Becken, oder in England zu beobachten waren, nach der Art Werners zu korrelieren. Mit den Methoden William Smiths ließen sich diese anschaulich in geologischen Karten und Profilen darstellen. Dabei machte man zunehmend Gebrauch von Leitfossilen.

Aktualismus und Katastrophismus

Gerade das Studium der Leitfossilien führte zu einer anderen, lang anhaltenden Kontroverse, über die Rolle, die man katastrophalen Ereignissen in der Geschichte der Erde zuschreiben darf. Als Hauptvertreter der Kataklysmen-Theorie gilt Georges de Cuvier (1769 - 1832). Aus den, oft dramatischen, Unterschieden im Fossilbestand der einzelnen Formationen schloss er, dass im Laufe der Erdgeschichte riesige Umwälzungen stattgefunden haben müssen, die in bestimmten Gebieten alle Lebewesen ausgelöscht hätten. Danach seien diese durch neue, entweder von außen zugewanderte, oder gänzlich neu erschaffene, Organismen ersetzt worden. Die biblische Sintflut sei dabei nur die allerletzte dieser Katastrophen gewesen. Einer der letzten Paläontologen, der als Anhänger des Katastrophismus die Artenvielfalt auf eine metaphysische Kausalität - einen schöpferischen Gott - zurückführte, war Louis Agassiz.

Das Konzept des Aktualismus wurde von Sir Charles Lyell (1797 - 1875) entwickelt. Sein Hauptwerk Principles of Geology erschien zuerst 1830. Basierend auf den Gedanken James Huttons kam Lyell zu dem Schluss, dass die geologische Zeitskala, im Vergleich zur menschlichen Geschichte, sehr lang ist. Außerdem ging er davon aus, dass die Prozesse, die zur Bildung von bestimmten Gesteinen führten, im Wesentlichen identisch sind, zu den Vorgängen, die man noch heute beobachten kann. ("Die Gegenwart ist der Schlüssel zur Vergangenheit") Die Veränderungen im Fossilbestand erklärte Lyell durch ständige, langsame Hebungen und Senkungen der Erdkruste. Die Schichtgrenzen an denen sich die Lebewesen anscheinend sprunghaft veränderten, entsprächen einfach den Zeiten, in denen sich auf den herausgehobenen Festländern keine Sedimente abgelagert hätten.

Datei:Charles Darwin 1854.jpg
Charles Darwin 1854

Es war Charles Darwin (1809 - 1882) der dem Aktualismus weitgehend zum Durchbruch verhalf. In seiner Jugend hatte er eine formale, wenn auch kurze, Ausbildung als Geologe erhalten, und seine Erklärung der Entstehung der Korallenriffe wird noch heute akzeptiert. Seine größte Leistung jedoch, die Evolutionstheorie, basiert wesentlich auf Lyells aktualistischem Prinzip. Erst durch das vergleichende Studium heute lebender Organismen stellte er die Paläontologie auf eine solide theoretische Grundlage. Darwin lieferte mit seiner Theorie von der natürlichen Zuchtwahl das Werkzeug, mit dem man die langsame Veränderung der Organismen im Laufe der Erdgeschichte erklären kann, ohne dafür völlig unbekannte, willkürliche, wenn nicht sogar übernatürliche, Kräfte postulieren zu müssen.

Trotzdem wäre es verfrüht den endgültigen Sieg der Aktualisten zu verkünden. In der Tat fiel es ausgerechnet Lyell sehr schwer, Darwins Evolutionstheorie zu akzeptieren. Lyells Vorhersage, dass man auch Reste von Wirbeltieren in den ältesten Schichten finden müsste, wurde aber niemals erfüllt. Auch das späte Erscheinen des Menschen widersprach seiner Ansicht, dass sich die Erde in ihrer Geschichte niemals wesentlich verändert hätte. Gerade in neuerer Zeit sieht man, wie sich der totgesagte Katastrophismus durch die Hintertür wieder einschleicht. Die Vorstellung von langen, ruhigen, stabilen geologischen Epochen, in denen sich praktisch nichts verändert, schließt die Möglichkeit von einmaligen, plötzlichen, katastrophalen Umwälzungen (wie z.B. Meteoriten-Einschläge) schließlich nicht aus.

Weitere Entwicklung und erste Hypothesen zur Gebirgsbildung

Im Verlauf des 19. Jahrhunderts wurden weltweit immer mehr Einzelinformationen zusammen getragen. Nach und nach bildete sich eine allgemein akzeptierte, relative geologische Zeitskala heraus. Die verschiedenen Staaten gründeten ihre jeweiligen geologischen Institute, die sich besonders mit der Herstellung nationaler Kartenwerke und der Erforschung von Lagerstätten beschäftigten.

Der Katastrophist Léonce Élie de Beaumont (1798 - 1874) entwickelte die erste umfassende Theorie zur Gebirgsbildung (Orogenese). Demnach entstünden die weltweiten Gebirgsgürtel durch die, von kataklysmischen Vulkanausbrüchen begleitete, Abkühlung des Erdkörpers, ähnlich wie die schrumpfende Haut eines erkaltenden Bratapfels.

Im Schweizer Jura, und besonders in den Kohlefeldern der Appalachen in Nordamerika, wurden tatsächlich immer mehr Indizien entdeckt, die auf bedeutende seitliche Einengung von Gesteinsschichten hinwiesen. Diese Bewegungen hatten dort anscheinend zur Bildung von ausgedehnten Falten und tektonischen Überschiebungen geführt. 1873 fasste der amerikanische Aktualist James Dwight Dana (1813 - 1895) solche Beobachtungen zu seiner Geosynklinal-Theorie zusammen. Diese blieb, bis weit ins 20. Jahrhundert hinein, das maßgebliche tektonische Erklärungsmodell. In Europa verhalf Eduard Suess (1831 - 1914), mit seinen Arbeiten über die Alpen, solchen Vorstellungen zum Durchbruch. Auf Suess geht auch die Unterscheidung der weltweiten Gebirgsbildungsphasen zurück. Am bekanntesten sind die kaledonische, varistische und alpidische Faltungsära. Hans Stille (1876 - 1966) vertrat noch bis in die zwanziger Jahre des 20. Jahrhunderts sehr erfolgreich die Kontraktions-Hypothese, nach der die Gebirgsbildung v.a. durch die Schrumpfung des Erdkörpers hervor gerufen wird (Stille-Zyklus).

Das Problem dieser Hypothese besteht darin, dass sie bestimmte expansive Phänomene, wie die Einsenkung von Grabenbrüchen oder Spaltenvulkanismus, nicht befriedigend zu erklären vermag. Außerdem bleibt unklar, wie ein kontinuierlicher Abkühlungsprozess zu zyklisch wiederkehrenden Phasen der Gebirgsbildung führen soll, die durch lange Zeiten tektonischer Ruhe von einander getrennt sind. Erst die Entdeckung der natürlichen Radioaktivität lieferte eine plausible Energiequelle, die dem bisher angenommenen, unaufhaltsamen Abkühlungs- und Schrumpfungsprozess des Erdkörpers entgegen wirken konnte. Aber auch so blieb das Phänomen der Gebirgsbildungs-Zyklen rätselhaft.

Die Suche nach dem Urkontinent

In der zweiten Hälfte des 19. Jahrhunderts wurden immer mehr Ähnlichkeiten zwischen den Ablagerungen und Fossilien auf verschiedenen Kontinenten entdeckt, besonders in Südamerika, Afrika und Indien. Man postulierte daher die Existenz von Landbrücken, die die Kontinente früher mit einander verbunden hätten, so wie heute der Isthmus von Panama Nord- und Südamerika verbindet. E. Suess hingegen nahm an, dass große Teile des ursprünglich zusammen hängenden Gondwanalands, abgesunken seien und sich in Ozeanböden verwandelt hätten. Gerade diese Vorstellung fand übrigens großen Anklang in okkultistischen und esoterischen Zirkeln um Madame Helena Blavatzky. Nicht nur der Untergang von Atlantis, sondern auch von 'Lemuria' (die vermutete Urheimat der Lemuren) im Indischen Ozean, und von Mu im Pazifik, wurde in der Folge von 'Medien' phantasievoll ausgemalt, und mit der Theorie von der Ozeanisierung von kontinentaler Kruste erklärt.

Die Entdeckung der Erdkruste

Beim Legen der ersten submarinen Fernsprechkabel von den Britischen Inseln nach Nordamerika, Ende des 19. Jahrhunderts, entdeckte man den mittelatlantischen Rücken, der küstenparallel den ganzen Ozean von Norden nach Süden durchzieht.

Besonders italienische, und später deutsche Geophysiker begannen mit der Konstruktion von Seismographen, mit denen die Ausbreitungswellen von Erdbeben im Erdkörper aufgezeichnet werden konnten. Um das Jahr 1900 schloss Emil Wiechert (1861 - 1928) aus seismischen Daten auf die Schalenstruktur der Erde, mit Erdkern, Erdmantel und Erdkruste.

Bis in die Mitte des 20. Jahrhunderts hinein wurden die verschiedensten geotektonischen Hypothesen vorgeschlagen, wie die Pulsations-Hypothese, die von abwechselnden Phasen von Kontraktion und Expansion der Erde ausgeht, oder die Oszillations-Hypothese, die verstärkt auf vertikale, isostatische Ausgleichsbewegungen in der Erdkruste zurück greift. Wie ihren Vorgängern, so ist allen diesen Hypothesen gemeinsam, dass sie von einer festen Fixierung der Erdkruste auf ihrer Grundlage ausgehen.

Die Theorie der Kontinentaldrift

Pangäa

Die ersten mobilistischen Vorstellungen finden sich in der Kontinentaldrift-Hypothese Alfred Wegeners (1880 - 1930), aus dem Jahr 1915. Wegener nahm an, dass die verhältnismäßig leichten, granitischen Gesteine der kontinentalen Kruste (Sial), auf dem dichteren, aber zähflüssigen Untergrund aus basaltischem Material (Sima) schwimmen, wie Eisberge auf dem Wasser. Damit postulierte er zum ersten Mal, dass sich ozeanische und kontinentale Kruste prinzipiell unterscheiden. Ein ursprünglicher Superkontinent (Pangäa) könnte so durch relativ schwache Kräfte in Stücke brechen und auseinander treiben. Dies würde nicht nur den parallelen Verlauf der östlichen und westlichen Küsten des Atlantiks erklären, sondern auch die Ähnlichkeiten der Fossilien und Klimazeugen, sowie bestimmter alter Gebirgszüge in Gondwana. Wegeners Theorie stieß zu seinen Lebzeiten aber auf breite Ablehnung, da er die wirkenden Kräfte nicht plausibel machen konnte. Erst Arthur Holmes (1890 - 1965) schlug 1930 einen Mechanismus vor, der die Bewegung von Kontinentalplatten erklären könnte: Konvektionsströmungen heißer Magmen im Erdmantel.

Der Durchbruch mobilistischer Theorien erfolgte aber erst drei Jahrzehnte später. Man erkannte, dass das weltumspannende System der mittelozeanischen Rücken seismisch aktiv ist, und dass dort, entlang von vulkanischen Spalten, kontinuierlich neues Material an die Oberfläche tritt. Bei Island, dass genau auf dem mittelatlantischen Rücken liegt, wurde mit Hilfe paläomagnetischer Messungen der Gesteine auf dem Meeresgrund nachgewiesen, dass sich die beiden symmetrischen Seiten des Ozeanbodens jedes Jahr einige Zentimeter auseinander bewegen. Dieses Phänomen wird heute, mit einer nicht ganz glücklichen Übersetzung aus dem Englischen, als Ozeanbodenspreizung bezeichnet. Siehe: Sea-Floor-Spreading. Ozeanbodenausbreitung wäre wohl treffender. Aus einer Fülle von geophysikalischen, ozeanographischen, paläontologischen und petrographischen Beobachtungen entwickelte sich darauf hin die heute allgemein akzeptierte Theorie der Plattentektonik. Der zyklische Wechsel von Phasen des Auseinanderbrechens von Kontinenten, und der erneuten Kollision dieser Platten, liefert eine plausible Erklärung für die wiederkehrenden, globalen Gebirgsbildungsphasen (Wilson-Zyklus), sowie für eine Reihe anderer geologischer Phänomene.

Ausblick und offene Fragen

Der Fixismus gilt heute als weitgehend überholt, obwohl er sich konsequent aus dem einstmals "siegreichen" Aktualismus entwickelt hatte, sowie aus dem ebenfalls "siegreichen" Plutonismus, mit seiner Geringschätzung des Wassers und der Ozeane. Wenn man sich aber die Geschichte der Geologie anschaut, wäre es nicht verwunderlich, wenn auch gewisse Aspekte des Fixismus irgendwann wieder durch die Hintertür in die Theorie eindringen würden. In der Tat stellen sich auch im Rahmen der Plattentektonik noch etliche ungeklärte Fragen:

  • Warum war der Superkontinent Pangäa so lange stabil? Haben die Konvektionszellen in dieser Zeit einfach still gestanden? Überhaupt ist die genaue Verteilung, Anzahl und Gestalt dieser Konvektionszellen alles andere als klar.
  • Warum wird bei der Kollision der Platten in den Subduktionszonen nur die kontinentale Kruste deformiert, die ozeanische aber nicht?
  • Warum finden sich zwischen Afrika, Indien und der Antarktis, sowie zwischen der Antarktis und Australien gut entwickelte Mittelozeanische Rücken, zwischen Australien und Indien aber nicht?
  • Warum gehören, nach radiometrischen Messungen, ausgerechnet die Gesteine des Saint-Pauls Felsen, direkt auf dem mittelatlantischen Rücken, mit zu den ältesten der Welt?

Daher zum Abschluss ein kleiner Scherz, der schon vom Bischof von Durham, Richard de Bury (1287 - 1345), stammen könnte, der als erster den Begriff "Geologia" einführte, um die Lehre von den irdischen Dingen von der Theologie zu unterscheiden: "Was ist der Unterschied zwischen einem Theologen und einem Geologen? Die Theologen waren noch nie 'da oben'. Die Geologen waren noch nie 'da unten'.

Literatur

  • Helmut Hölder (1989): Kurze Geschichte der Geologie und Paläontologie, Springer Verlag, ISBN 3-540-50659-4
  • David R. Oldroyd (1996): Thinking about the Earth, Harvard Press, ISBN 0-674-88382-9; dt.: Die Biographie der Erde. Zur Wissenschaftsgeschichte der Geologie, Frankfurt a.M., 1998.
  • Alan Cutler (2004): Die Muschel auf dem Berg, Knaus, ISBN 3813501884

Weblinks