Dreiteilung des Winkels

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 13. April 2021 um 17:24 Uhr durch Petrus3743 (Diskussion | Beiträge) (1 EN mit Link ersetzt). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Unter der Dreiteilung des Winkels (auch: Trisektion des Winkels) versteht man in der Geometrie das Problem, ob man einen beliebigen Winkel nur mit Hilfe von Zirkel und Lineal (den euklidischen Werkzeugen) konstruktiv und präzise in drei gleich große Winkel unterteilen kann. Die Dreiteilung des Winkels gehört zu den drei klassischen Problemen der antiken Mathematik und ist nur für bestimmte Winkel durchführbar.

Obwohl die Problemstellung der Winkeldreiteilung bis in die Antike zurückreicht, konnte erst im 19. Jahrhundert mit Methoden der Algebra gezeigt werden, dass sie mit Zirkel und Lineal im Allgemeinen nicht zu lösen ist. Der erste Beweis dieser Negativaussage stammt von Pierre Wantzel aus dem Jahr 1837. In diesem wird das Problem auf eine algebraische Gleichung dritten Grades reduziert und argumentiert, dass deren Lösungen keine Zahlen sind, die sich in endlich vielen Schritten konstruieren lassen. Da nur zu zeigen ist, dass die Konstruktion im Allgemeinen nicht funktioniert, reicht die Angabe eines einzigen Gegenbeispiels. Zum Beispiel ist der Winkel von 20° nicht mit Zirkel und Lineal konstruierbar, weshalb der Winkel 60° mit diesen Werkzeugen auch nicht gedrittelt werden kann.

Obwohl eine klassische Konstruktion nicht möglich ist, kann die Dreiteilung eines Winkels unter Zuhilfenahme von Hilfsmaterialien, wie eines markierten Lineals, exakt vollzogen werden. Einige dieser Techniken waren bereits in der Antike bekannt.

In auffälligem Gegensatz zum Problem der Winkeldreiteilung steht die unter Verwendung der Winkelhalbierenden sehr leicht machbare Winkelhalbierung mit Zirkel und Lineal.

Klassisches Problem

Beispiele für drittelbare Winkel, (gedrittelter Winkel):
45° (15°), 90° (30°), 135° (45°) … 225 (90°−15°) …
315° (90°+15°) und 360° (90°+30°)

Nach der klassischen Vorgabe zählt eine Lösung nur, wenn ein beliebiger gegebener Winkel allein mit Hilfe eines Zirkels und einem nichtskalierten Lineal in drei gleich große Teile aufgeteilt wird.

Bei speziellen Winkeln ist die Dreiteilung des Winkels möglich, etwa bei jedem ganzzahligen Vielfachen von 45°.[1] Darüber hinaus ist das Drittel eines Winkels konstruierbar, wenn das Drittel 3° oder ein ganzzahliges Vielfaches von 3° ist.[2]

Schon die alten Griechen versuchten vergeblich, eine allgemeine Lösung für beliebige Winkel zu finden. Um das Jahr 1830 schuf der französische Mathematiker Évariste Galois die Grundlagen, mit denen später bewiesen wurde, dass dies nicht allgemein möglich ist.[3] Beispielsweise ist es nicht möglich, den konstruierbaren Winkel 60° zu dritteln, da 20° nicht konstruierbar ist.

Warum dies unmöglich ist, wird im Abschnitt Beweis der Unmöglichkeit verdeutlicht.

Eine allgemeine Dreiteilung ist demzufolge letztendlich nur möglich, wenn zu Zirkel und Lineal auch zusätzliche Hilfsmittel Verwendung finden – etwa eine Trisektrix – oder wenn auf dem Lineal Markierungen angebracht werden. Andererseits sind mit Zirkel und Lineal beliebig gute Näherungslösungen – wie dies Beispiele im Folgenden zeigen – darstellbar.

Geschichte

Antike

Die Griechen waren es, die im 5. Jahrhundert v. Chr. das Problem, einen beliebigen Winkel in drei gleich große Winkel zu unterteilen, erkannten. Vermutlich trat dieses Problem in den Vordergrund mathematischen Interesses, als sie versuchten, für astronomische Zwecke eine Sehnentafel aufzustellen.[4] Sie strebten nach einer Lösung, die allein mit Zirkel und einem unmarkierten Lineal – eine auf Oinopides von Chios (~ 440 v. Chr.) zurückgehende Beschränkung –[5] zu bewältigen sei, aber sie fanden keine, die dieser Vorgabe gerecht wurde.[6] Beispielsweise bei der Sehnentafel des Ptolemaios stößt man auf die elementargeometrisch nicht mehr zu bewältigende Aufgabe, aus der Sehne für die Sehne für zu gewinnen.[4] Die für die Sehnengeometrie erforderliche Trigonometrie wurde viele Jahrhunderte bis Nikolaus Kopernikus (1473–1543) lediglich als Bestandteil der Astronomie aufgefasst und dementsprechend in astronomischen Werken behandelt. Das erste selbständige Lehrbuch der Trigonometrie verfasste Regiomontanus um 1464, doch erschien es erst posthum fast 70 Jahre später im Jahr 1533.[7]

Hippias von Elis (um 460 bis um 400 v. Chr.) fand als Erster um 422 v. Chr. eine Lösung mithilfe eines sogenannten zusätzlichen Hilfsmittels. Es war eine Hilfskurve, sie wurde bekannt als die Trisektrix des Hippias oder Quadratrix des Hippias.[8] Diese ist sogar für die Teilung eines Winkels in gleiche Teile erdacht. Der Name Quadratrix rührt davon, dass sie auch das Problem der Kreisquadratur beantwortet. Daraus kann gefolgert werden, dass es sich um eine transzendente Kurve handelt. Dennoch ist sie leicht beschreibbar, da sie durch zwei einfache Bewegungen erzeugt wird.[4]

Archimedes von Syrakus (287 bis 212 v. Chr.) fand eine pragmatische Lösung. Obgleich die Zuweisung an Archimedes nicht gesichert ist, existiert eine nur auf Arabisch überlieferte Konstruktion des regelmäßigen Siebenecks. Während die regelmäßigen Drei-, Vier-, Fünf- und Sechsecke sich bekanntlich mit Zirkel und Lineal in einem gegebenen Kreis beschreiben lassen, geht das beim Siebeneck nicht mehr. Algebraisch führt die Teilung des Kreises in sieben gleiche Teile auf eine kubische Gleichung und gehört daher der gleichen Problemklasse an wie die Würfelverdoppelung und die Winkeldreiteilung. Die angeblich von Archimedes gefundene Konstruktion arbeitet zwar auch nur mit diesen beiden Geräten, verwendet das Lineal allerdings in einer in der euklidischen Geometrie nicht erlaubten Weise: Es wird solange um einen festen Punkt gedreht, bis zwei Dreiecke, von denen eines bei der Drehung anwächst, während das andere abnimmt, flächengleich sind. Es ist dies ein besonderer Typus einer Einschiebekonstruktion oder sog. Neusis. Das angewandte Verfahren ist zwar von theoretischem Interesse, aber nicht praktisch anwendbar.[9] Heute wird sie als Neusis-Konstruktion bezeichnet. Später schuf er eine spezielle Kurve, nannte sie Spirale (archimedische Spirale) und untersuchte damit die Winkelteilung und die Quadratur des Kreises.

Im 2. Jh. v. Chr. ersann Nikomedes ein Instrument, das die Forderung der von Pappos überlieferten Neusis-Konstruktion mechanisch zu erfüllen gestattet. Die damit konstruierbaren Kurven erhielten wegen ihrer Gestalt den Namen Konchoide, auf deutsch Muschelkurven.[10] Das Instrument besteht aus zwei T−förmig fest miteinander verbundenen Linealen, auf denen sich ein drittes in bestimmter Weise bewegen kann.[11] Sie diente ihm damit als zusätzliches Hilfsmittel für die Dreiteilung des Winkels.[12]

Pappos von Alexandria (im 4. Jh. n. Chr.) gehörte dem Kreis der alexandrinischen Neuplatoniker an. Seine Collectiones sind ein Sammelwerk in acht Büchern; bis auf das erste und den Anfang des zweiten sind sie allesamt erhalten geblieben. In der frühen Neuzeit entnahmen die europäischen Mathematiker den Collectiones viele Anregungen, enthalten sie doch wichtige Auszüge aus den Schriften von Euklid, Apollonios, Archimedes und anderen Mathematikern. Pappos erweiterte diese Auszüge um kritische Kommentare und teils eigene Ergänzungen.[13] Er zeigte u. a. zwei unterschiedliche Varianten für die Lösung der Winkeldreiteilung mit Hilfsmitteln – eine pragmatische mit einem markierten Lineal als zusätzlichem Hilfsmittel,[14] sprich eine Neusis-Konstruktion (siehe hierzu den Abschnitt Die Methode des Pappos) und eine zweite, in der er die Hyperbel als Trisektrix nutzte.[15]

Früh- bis Spätmittelalter

Ahmad ibn Mûsâ lebte Mitte des 9. Jahrhunderts in Bagdad und war einer der drei Brüder, die sich Banū Mūsā nannten. Er war Astronom und Mathematiker. Seine Lösung zeigt zwei vorbestimmte Asymptoten einer Hyperbel, die durch einen gegebenen Punkt verläuft. Für die Drittelung des Winkels bedarf es eines markierten Lineals und somit einer Neusis-Konstruktion. Seine Lösung war der von Pappos Papierstreifenkonstruktion sehr ähnlich (siehe hierzu den Abschnitt Die Methode des Pappos).[16]

Thabit ibn Qurra (826–901) aus Bagdad war anfangs Geldwechsler, fand Interesse an der Wissenschaft, wurde in Mathematik geschult und befasste sich auch mit Philosophie und Astronomie. Für seine Neusis-Konstruktion nutze er ebenfalls die Hyperbel. Seine Konstruktion war aber, im Gegensatz zu der von Ahmad ibn Mûsâ, exakter bezeichnet und ausführlicher begründet. Auch seine Lösung hatte große Ähnlichkeit mit Pappos Papierstreifenkonstruktion.[17]

Ihren Höhepunkt erreichte die muslimische Astronomie und Trigonometrie im 15. Jahrhundert an der Sternwarte des Ulug Beg in Samarkand. Dort war al-Kaschi tätig, der sich eines geschickten Iterationsverfahrens bediente, um mit großer Genauigkeit aus der Winkeldreiteilungsgleichung den Sinus von zu berechnen. Im Prinzip ging er folgendermaßen vor. Da sich beliebig exakt bestimmen ließ (man konnte ihn z. B. aus der Differenz von am Fünfeck und am Sechseck mit Zirkel und Lineal konstruieren), verwendete er die Winkeldreiteilungsgleichung

.

In dieser trigonometrischen Schreibweise findet sie sich erstmalig am Ende des 16. Jahrhunderts bei Vieta. Sie ist vom Typus (in der damaligen Klassifikation wurden die Koeffizienten — hier , — als positiv vorausgesetzt). Al-Kaschi berechnete die erste Näherung aus zu . Die zweite Näherung folgt dann analog aus usw., wobei sich als Besonderheit ergibt, dass sich mit jedem Schritt eine weitere Sexagesimalstelle exakt ermitteln lässt. Das Ergebnis al-Kaschis, in Dezimalschreibweise umgerechnet, liefert 18 Stellen:[18]

.

Eine große Anzahl arabischer Handschriften befindet sich noch ungesichtet in orientalischen Bibliotheken, so dass die Forschung bisher kein vollständiges Bild der Entwicklung und des erreichten Wissens erarbeiten konnte.[19]

Renaissance bis Neuzeit

Albrecht Dürer steuerte als Mathematiker ebenfalls zur Theorie der Winkeldreiteilung bei. Neben guten Näherungskonstruktionen für das reguläre 7-, 9-, 11- und 13-Eck finden sich im 2. Buch seiner Underweysung auch die näherungsweise Winkeldreiteilung. Sie wurde 1931 mit mehreren anderen Näherungslösungen der gleichen Aufgabe verglichen und dabei wurde gezeigt, dass sie nirgends um mehr als etwa 20 Bogensekunden vom genauen Wert abweicht und damit alle anderen späteren Lösungsvorschläge übertrifft.[20][21] Dürers Konstruktionsidee lässt sich zudem leicht iterieren und liefert nach einigen Schritten eine sehr hohe Genauigkeit. Bei allem ist sich Dürer des grundlegenden Unterschiedes zwischen exakten, er nennt sie demonstrative, und Näherungslösungen, er nennt sie mechanice, jederzeit bewusst und hebt sich damit sogar von den meisten professionellen Mathematikern seiner Zeit ab.[22]

Die erste Person, die den Nachweis der Unlösbarkeit des Problems – allein mit Zirkel und Lineal – erbrachte, war Pierre-Laurent Wantzel im Jahr 1837. Es wird von Historikern jedoch bezweifelt, dass Wantzel als Erster um einen Beweis wusste, da schon der junge Carl Friedrich Gauß sehr wahrscheinlich über einen solchen verfügt hat.[23] Ein großer Teil seines 1801 erschienenen Werkes Disquisitiones arithmeticae ist der Frage gewidmet, welche Bedingungen eine Polynomgleichung erfüllen muss, um durch quadratische Radikale lösbar zu sein. Dort finden sich auch die nach Gauß benannten Sätze, mit deren Hilfe für die meisten klassischen Aufgaben die Unlösbarkeit mit Zirkel und Lineal nachgewiesen werden kann. Mit seinen entwickelten Techniken bewies Gauß zum Beispiel, dass sich das 17-Eck mit Zirkel und Lineal konstruieren lässt. Die Tatsache, dass trotzdem Wantzel von vielen Autoren als Urheber der Sätze genannt und zitiert wird, führen die Mathematikhistoriker Christoph Scriba und Peter Schreiber auf die „Kommunikationsschwierigkeiten“ der Wissenschaft des 19. Jahrhunderts zurück.[24]

Beweis der Unmöglichkeit

Geschichte des Beweises

Es ist im Allgemeinen nicht möglich, die Dreiteilung des Winkels allein mit Zirkel und Lineal zu vollziehen.

Pierre Wantzel veröffentlichte 1837 einen Beweis, dass es im Allgemeinen unmöglich ist, einen Winkel mit Zirkel und Lineal in drei gleiche Teile zu zerlegen.[25] Sein Beweis benutzt, wenn man es in moderner Terminologie ausdrückt, Körpererweiterungen, wie sie in der abstrakten Algebra und insbesondere in der Galoistheorie behandelt werden. Wantzel veröffentlichte diese Ergebnisse früher als Galois (dessen Werk 1846 herauskam) und benötigte dabei nicht den Zusammenhang zwischen Körpererweiterungen und Gruppen, mit dem sich die Galoistheorie befasst.[26] Sein Beweis beruhte auf folgenden algebraischen Überlegungen:[27]

1. Im ersten Teil des Beweises argumentiert er, dass, wenn ein Konstruktionsproblem mit Lineal und Zirkel gelöst werden kann, „die Unbekannte des Problems durch die Lösung einer Reihe von quadratischen Gleichungen erhalten werden kann, deren Koeffizienten rationale Funktionen der Parameter des Problems und der Wurzeln der vorherigen Gleichungen sind“.

Mit der „Unbekannten des Problems“ ist dabei zum Beispiel die gesuchte Strecke gemeint.

2. Danach zeigte er, dass jede algebraische Zahl , die Lösung der letzten Gleichung eines Systems
ist, wobei die Koeffizienten stets durch sukzessive Adjunktion im Körper liegen, stets von einem Polynom des Grades mit Koeffizienten in gelöst wird. Dabei löst die Gleichung und sind die gegebenen Parameter des Problems.
3. Wantzel wusste, dass jede algebraische Zahl Lösung eines Polynoms mit Grad einer Zweierpotenz ist, wenn diese hinreichend groß gewählt würde. Daher war sein Hauptresultat, zu zeigen, dass, wenn die Anzahl an benötigten Gleichungen zu einem Minimum reduziert würde, das resultierende Polynom irreduzibel über ist.

Die Unmöglichkeit der Konstruktion folgt nun als Korollar aus den Sätzen 1 bis 3: Wäre, beginnend mit den Strecken 0, 1 und , die Dreiteilung eines Winkels mit Zirkel und Lineal möglich, so müsste Nullstelle eines irreduziblen Polynoms über sein, das als Grad eine Zweierpotenz hat. Das Polynom ist im Allgemeinen irreduzibel über , hat aber den Grad 3. Dies ist ein Widerspruch.

Es ist zu beachten, dass Wantzels Originalpublikation von dem Mathematikhistoriker Jesper Lützen als lückenhaft und schwer zu verstehen angesehen wird – dies betrifft vor allen Dingen den „Beweis“ des Hauptsatzes 3. Von Lützen wurden die Lücken im Nachhinein geschlossen und die Resultate, wie oben beschrieben, in moderner Fachsprache formuliert.[28] Wantzels Beweis für die Unmöglichkeit, die Dreiteilung des Winkels und die Verdoppelung des Würfels mit Lineal und Zirkel zu konstruieren, war nach seiner Veröffentlichung im Jahr 1837 fast ein Jahrhundert lang vergessen. Laut Lützen waren dabei die „mangelnde Berühmtheit des Autors“, die „Tatsache, dass einige seiner Zeitgenossen das Ergebnis als bekannt oder sogar als bewiesen ansahen“, und dass „das Ergebnis zum Zeitpunkt seiner Veröffentlichung nicht als wichtiges mathematisches Ergebnis angesehen wurde“, die treibenden Gründe.[29]

Algebraischer Beweis

Kennt man , oder , so kann der Winkel konstruiert werden. Die Frage ist also, ob man zum Beispiel aus der Information mit Zirkel und Lineal die Zahl konstruieren kann.
Dreiteilung des Winkels mittels der dritten Einheitswurzeln in der komplexen Zahlenebene

Das Problem der Konstruktion eines Winkels von gegebener Größe ist äquivalent zur Konstruktion zweier Strecken, deren Längen im Verhältnis stehen. Die Lösung von einem dieser beiden Probleme mit Zirkel und Lineal ergibt die Lösung des anderen. Mithilfe der Formel zum Kosinus des dreifachen Winkels[30]

lässt sich eine algebraische Gleichung aufstellen, die die Werte und in Verbindung bringt. Daraus folgt, dass das Problem der Winkeldreiteilung äquivalent dazu ist, eine bestimmte Strecke zu konstruieren, bei der das Verhältnis zwischen Streckenlänge und Längeneinheit gleich einer Lösung einer bestimmten kubischen Gleichung ist. Damit ist das ursprünglich geometrische Problem auf ein rein algebraisches Problem zurückgeführt.

Die kubische Gleichung kann einfach aus der Formel von De Moivre für die komplexe Exponentialfunktion gefolgert werden. Nach der Eulerschen Formel gilt

und durch beidseitiges dreifaches Potenzieren kann die Gleichung über einen Vergleich der Realteile und abgelesen werden. Dabei bezeichnet die imaginäre Einheit der komplexen Zahlen.

Im Detail kann der Beweis der Unmöglichkeit der Winkeldreiteilung über folgende Ideen aus der Algebra vollzogen werden. Es seien eine Menge von Punkten (komplexen Zahlen), welche mindestens 0 und 1 enthält, und ein beliebiger Punkt gegeben. Es ist für diese Überlegungen von Wichtigkeit, dass die komplexen Zahlen als Ebene aufgefasst werden können – im Gegensatz dazu werden die reellen Zahlen schlicht als Gerade aufgefasst. Dann gilt, dass der Punkt genau dann mit Zirkel und Lineal aus den Punkten konstruierbar ist, falls er in einem Körper (dabei ist der Körper der komplexen Zahlen) liegt, der durch Adjunktion einer Quadratwurzel aus dem Körper

hervorgeht. Dabei ist grob gesprochen die Menge, die aus Bilden aller Summen, Differenzen, Produkte und Quotienten aus rationalen Zahlen mit entsteht. Hier ist die Menge der komplex Konjugierten aller Elemente von und das Symbol steht für die Vereinigung zweier Mengen. Adjunktion einer Quadratwurzel bedeutet, dass es ein geben muss, so dass . Zum Beispiel geht durch die Adjunktion einer Quadratwurzel aus den rationalen Zahlen hervor, da eine rationale Zahl ist – entsprechend ist die Menge aller Summen, Differenzen, Produkte und Quotienten rationaler Zahlen mit der Zahl . Bei handelt es sich um eine sogenannte Körpererweiterung. Das Problem der Winkeldreiteilung mittels Zirkel und Lineal lässt sich also auf die Frage reduzieren, ob die Zahl in einem Teilkörper von liegt, der aus durch sukzessive Adjunktion von Quadratwurzeln gewonnen werden kann. Das bedeutet jedoch, dass der Erweiterungsgrad von aus eine Potenz von 2 sein muss. Es ist aber im Allgemeinen

womit es unmöglich ist, die Winkeldreiteilung mittels Zirkel und Lineal vorzunehmen.[31] Dass die Körpererweiterung im Allgemeinen vom Grad 3 ist, kann wie folgt gesehen werden: Wäre das Polynom für reduzibel über den rationalen Zahlen, müsste es eine rationale Nullstelle besitzen. Wegen kann äquivalenterweise studiert werden. Nach dem Satz über rationale Nullstellen kommen nur die Werte , , und als rationale Nullstellen dieser Gleichung in Frage. Alle diese Werte können durch Einsetzen als Nullstelle ausgeschlossen werden. Somit muss irreduzibel über sein, und das Minimalpolynom von über hat den Grad 3.

Es kann gezeigt werden, dass sich der Winkel nicht mit Zirkel und Lineal dreiteilen lässt, falls eine transzendente Zahl ist.[31]

Verallgemeinerung

Eine Verallgemeinerung des Problems ist es, genau zu charakterisieren, welche Winkel konstruierbar sind und welche nicht. Äquivalente Fragestellungen sind, für welche natürlichen Zahlen man einen Kreis in gleich große Stücke mittels Zirkel und Lineal unterteilen kann bzw. welche regulären Polygone konstruierbar sind. Die exakte Charakterisierung der konstruierbaren -Ecke wurde 1837 von Pierre Wantzel (nach wesentlichen Vorarbeiten von Carl Friedrich Gauß und Évariste Galois) erzielt und besagt, dass dies genau dann der Fall ist, wenn ein Produkt aus einer Zweierpotenz und paarweise verschiedenen Fermatschen Primzahlen ist.[25] Ein Winkel lässt sich genau dann in gleich große Winkel teilen, wenn das Produkt einer Zweierpotenz und paarweise verschiedener Fermatscher Primzahlen ist, welche nicht teilen. Insbesondere folgt, dass genau dann klassisch gedrittelt werden kann, wenn nicht durch 3 teilbar ist, da 3 eine Fermatsche Primzahl ist.[32] Zum Beispiel lässt sich der Winkel (entspricht ) dritteln, da und 3 die 8 nicht teilt. Andererseits ist im Falle von der Winkel (entspricht ) nicht mit Zirkel und Lineal dreiteilbar, da die Zahl 15 durch 3 teilbar ist.

Der erste entscheidende Schritt über die Mathematik des Altertums hinaus war dem jungen Gauß mit seiner Entdeckung zu verdanken, dass das reguläre Siebzehneck konstruierbar ist.

Die bekannten Fermatschen Primzahlen sind 3, 5, 17, 257 und 65537. Allgemein sind Fermat-Zahlen die Zahlen , wobei selbst eine Zweierpotenz ist. Es wird vermutet, dass alle Fermat-Zahlen mit zusammengesetzte Zahlen sind.

Für das Problem der Winkeldreiteilung braucht man die fortgeschrittenen Theorien von Gauß und Galois nicht. Hier genügt die Erkenntnis, dass eine Streckenlänge, die einer irreduziblen Gleichung dritten Grades genügt, nicht konstruierbar ist; denn jede konstruierbare Streckenlänge lässt sich algebraisch durch die aufeinanderfolgende Lösung quadratischer Gleichungen gewinnen, ist also algebraisch von einem Zweierpotenzgrad.

Lösungsversuche durch Amateure

Obwohl die Unmöglichkeit der Dreiteilung des Winkels allein mit Zirkel und Lineal also schon lange bekannt ist, werden bis in die Gegenwart mathematische Zeitschriften und Fakultäten mit Beweisversuchen von Amateuren überhäuft. Underwood Dudley, der das Phänomen analysierte,[33] beschreibt den typischen Trisektor als älteren Mann, der in seiner Jugend von dem Problem hörte (es ist von den drei klassischen Problemen wahrscheinlich das für Laien zugänglichste) und im Ruhestand daran tüftelte. Dudley, der hunderte ihrer Beweisversuche sammelte, fand nur zwei Frauen unter den Winkeldreiteilern.

Ein weiteres Kennzeichen sei, so Dudley, dass Laien die Bedeutung von „unmöglich“ in der Mathematik nicht verstünden und dies stattdessen eher als Herausforderung sähen. Typischerweise hätten sie nur geringe Mathematikkenntnisse, dies müsse aber nicht unbedingt heißen, dass die Fehler in ihren Konstruktionen einfach zu finden sind. Charakteristischerweise seien ihre Diagramme sehr komplex, könnten aber mit geometrischen Kenntnissen häufig drastisch vereinfacht werden. Des Weiteren seien sie von der Wichtigkeit ihrer Lösungen für technische Anwendungen überzeugt, was wiederum für viele Patent- und Geheimhaltungsfragen nicht unwichtig ist.

Nachdem Dudley viele Methoden im Umgang mit hartnäckigen Winkeldreiteilern ausprobiert hatte, empfahl er deren Arbeit als Beitrag zu einer besseren Näherungslösung an das Problem zu loben (wahlweise für dessen Einfachheit oder Eleganz). Darüber hinaus soll man ihnen einen Computerausdruck, der den Fehler des Versuchs für verschiedene Winkel aufzeigt, zukommen lassen sowie Beispiele von „Näherungslösungen“ anderer Winkeldreiteiler.

Nichtklassische Verfahren

Beschränkt man sich nicht auf die klassischen Konstruktionvorschriften für Zirkel und Lineal, sondern lässt darüber hinaus die Verwendung anderer Konstruktionswerkzeuge und mathematischer Hilfsobjekte zu oder begnügt sich auch mit Näherungslösungen, so ergibt sich eine Vielzahl von möglichen Verfahren, einen beliebigen Winkel dreizuteilen. In den folgenden Abschnitten werden einige von ihnen beispielhaft vorgestellt.

Die Methode des Archimedes

Erforderlicher Anlegevorgang der Konstruktion

Archimedes war ein Pragmatiker, er gab eine Lösung[34] in seinem Liber Assumptorum an. Sei der dreizuteilende Winkel wie in nebenstehender Zeichnung. Gehe dann wie folgt vor:

  1. Schlage einen Kreis um mit beliebigem Radius .
  2. Am Lineal bringe zwei Markierungen im Abstand an.
  3. Lege das Lineal so an , dass eine der beiden Markierungen auf der Geraden im Punkt und die andere auf der Kreislinie im Punkt liegt, und zeichne die Strecke .
  4. Der Winkel bei ist der gesuchte Drittelwinkel.
Beweisführung für die Winkeldreiteilung nach Archimedes:
Anlegen des Lineals für Winkelweiten ist parallel zu
Anlegen des Lineals für
ist parallel zu

Zur Begründung beachte man, dass wegen der speziellen Positionierung des Lineals die Länge der Strecke gleich dem Abstand der Markierungen ist, also gleich dem Radius des Kreises, der sich auch als und wiederfindet. Insbesondere ist das Dreieck gleichschenklig, weshalb der Winkel auch bei auftritt. Der Winkel des Dreiecks bei ist einerseits gleich (Winkelsumme im Dreieck), andererseits der Nebenwinkel von , also ist . Da das Dreieck ebenfalls gleichschenklig ist, taucht der Winkel auch bei auf, und der Winkel dieses Dreiecks bei ist gleich . Beachtet man nun, dass sich die Winkel bei zu addieren, ergibt sich .

Dass mit dieser Methode jeder Winkel wie bewiesen dreigeteilt werden kann, steht nicht im Widerspruch zur Unlösbarkeit des klassischen Problems, denn die obige Konstruktion wurde nicht nach den klassisch geforderten Regeln durchgeführt. Eine Markierung am Lineal und ein geschicktes Anlegen des Lineals entsprechen keinen klassischen Konstruktionsmethoden. Es wurde also ein abweichender Instrumentensatz verwendet und die möglichen Konstruktionen sind vom Instrumentensatz abhängig.

Die Methode des Pappos

Methode des Pappos, Neusis-Konstruktion

Aus dem späten Altertum stammt die im Folgenden beschriebene Neusis-Konstruktion des Pappos zur Dreiteilung spitzer Winkel.[14]

Zu teilen sei der Winkel , vgl. die rechte Abbildung:

Nach dem Zeichnen der beiden Winkelschenkel und wird eine beliebige Länge als Strecke auf dem Schenkel bestimmt. Eine Parallele zu ab sowie das Lot ab mit Fußpunkt auf schließen sich an. Nun wird das Lineal, auf dem die Länge gleich markiert ist, so lange verschoben, bis der Eckpunkt auf der Parallelen zu liegt, die Länge die Strecke in schneidet und dabei die Kante des Lineals durch den Scheitel verläuft. Der so gefundene Winkel ist der gesuchte Winkel

Denn dieser Winkel ist als Wechselwinkel gleich dem Umfangswinkel der Kreissehne und nach dem Kreiswinkelsatz ist der zugehörige Mittelpunktswinkel gleich Weil das Dreieck gleichschenklig ist, gilt auch Dieser Winkel ist aber gleich der Differenz also gilt und daraus folgt [14]

Die gestrichelten Linien und der Mittelpunkt sind für die Konstruktion nicht erforderlich, sie dienen lediglich der Beweisführung.

Teilung mit Tomahawk

Der Tomahawk ist eine Figur, die aus mathematischer Sicht aus zwei aufeinander senkrecht stehenden Strecken und einem an einer der Geraden anliegenden Halbkreis besteht; das hintere Ende ist dabei so lang wie der Radius des Halbkreises (siehe Zeichnung). Die Bezeichnung Tomahawk rührt daher, dass die Figur vage an einen Tomahawk (indianische Streitaxt) erinnert. Um einen Winkel mit Hilfe des Tomahawks dreizuteilen, muss man ihn so positionieren (siehe Bild 1), dass sein „Stiel“ (Griff des Tomahawks) durch den Winkelscheitel geht, während der Halbkreis (die Klinge des Tomahawks) und der „Haken“ (die hintere Spitze des Tomahawks) jeweils die Schenkel des Winkels berühren. In dieser Position bildet der Stiel mit einem der Schenkel einen Winkel, der genau ein Drittel des Ausgangswinkels beträgt. Die Verbindung des Mittelpunktes des Halbkreises mit der Winkelspitze teilt das zweite und dritte Drittel des Ausgangswinkels. Da der Tomahawk eine Figur ist, die angelegt werden muss, ist diese Methode nicht mit den klassischen Konstruktionsregeln (Lineal und Zirkel) konform.[35]

Ist eine direkte Dreiteilung eines Winkels mithilfe eines Tomahawks nicht möglich (siehe Bild 3), weil der gegebene Winkel zu klein ist, um den Tomahawk positionieren zu können, so lässt sich die Dreiteilung des kleinen Winkels aus der Dreiteilung des zugehörigen großen Nebenwinkels konstruieren. Betrachtet man einen Winkel mit seinem Nebenwinkel an einem Halbkreis mit Radius , so erhält man wegen einen konstanten Winkel, der nicht von der Größe des Winkels abhängt (siehe Zeichnung). Dieser -Winkel ist Bestandteil eines gleichschenkligen Dreiecks, dessen Höhe beträgt. Damit ergibt sich dann die im nächsten Absatz beschriebene Konstruktion.

Es beginnt (siehe Bild 4) mit dem Einzeichnen des Durchmessers , dessen Halbierung in und dem Ziehen des Halbkreises über . Es folgt das Eintragen des gegebenen Winkels mit seinen beiden Winkelschenkeln. Nun wird der Tomahawk folgendermaßen positioniert: der „Haken“ liegt auf der Strecke der Halbkreis berührt den oberen Winkelschenkel und der „Stiel“ verläuft durch den Mittelpunkt Mit dem Einzeichnen der beiden Strecken und erhält man die Dreiteilung des Supplementwinkels . Um eine Dreiteilung des Winkels zu erzielen, wird nun der Punkt auf den Kreisbogen gespiegelt. Hierzu wird der Radius in halbiert und ein Halbkreis um ab gezogen, daraus ergibt sich der Schnittpunkt . Abschließend bedarf es noch eines Halbkreises um mit Radius , des Schnittpunktes und der geraden Linie ab durch bis zum Kreisbogen . Der so erzeugte Schnittpunkt ist eine Spiegelung des Punktes an der virtuellen Strecke . Somit ist der konstruierte Winkel exakt ein Drittel des gegebenen Winkels .

Teilung mit einem rechtwinkligen dreieckigen Lineal

Dreiteilung des Winkels mittels des Rechtwinkelhakens nach Ludwig Bieberbach, Animation am Ende 60 s Pause

Im Jahr 1932 veröffentlichte Ludwig Bieberbach seine Arbeit Zur Lehre von den kubischen Konstruktionen.[36] Er führt darin aus:

„Im folgenden soll gezeigt werden, daß man alle kubischen Konstruktionen lösen kann, wenn man neben üblichem Gebrauch von Zirkel und Lineal noch folgende Verwendung des Rechtwinkelhakens gestattet: Er ist so hinzulegen, daß sein einer Schenkel durch einen gegebenen Punkt geht, daß sein anderer Schenkel einen gegebenen Kreis berührt, sein Scheitel aber auf einer gegebenen Gerade liegt, wo er den neu zu konstruierenden Punkt markiert.“

Ludwig Bieberbach: Journal für die reine und angewandte Mathematik, DigiZeitschriften[36]

Der Winkel soll gedrittelt werden. Setzt man

  und  

führt dies zur Gleichung

[36]

Die folgende Beschreibung der nebenstehenden animierten Konstruktion enthält deren Weiterführung bis zur vollständigen Dreiteilung des Winkels.

Es beginnt mit dem ersten Einheitskreis um seinem Mittelpunkt , dem ersten Winkelschenkel und dem daran anschließenden zweiten Einheitskreis um . Nun wird der Durchmesser ab bis zur Kreislinie des zweiten Einheitskreises verlängert, dabei ergibt sich der Schnittpunkt . Es folgen der Kreisbogen um mit dem Radius und das Einzeichnen des zweiten Winkelschenkels vom Winkel , dabei ergibt sich der Punkt . Jetzt kommt das so genannte zusätzliche Konstruktionsmittel zum Einsatz, im dargestellten Beispiel ist es das Geodreieck. Dieses legt man jetzt auf folgende Art und Weise auf die Zeichnung: Der Scheitel vom Winkel bestimmt auf dem Winkelschenkel den Punkt , eine Kathete des Dreiecks verläuft durch den Punkt und die andere tangiert den Einheitskreis um . Nach dem Verbinden des Punktes mit und dem Einzeichnen der Tangente ab auf den Einheitskreis um zeigt sich der oben genannte Rechtwinkelhaken. Der von den Strecken und eingeschlossene Winkel ist somit exakt . Es geht weiter mit der Parallelen zu ab , dabei ergibt sich der Wechselwinkel oder Z-Winkel und der Punkt auf dem Kreisbogen um . Eine weitere Parallele zu ab bestimmt den Berührungspunkt von der Tangente mit dem Einheitskreis um . Abschließend noch eine gerade Linie von durch ziehen, bis sie den Kreisbogen um in schneidet.

Wegen

ist somit ist der Winkel exakt gedrittelt.

Kurven

Als Trisektrix bezeichnet man eine Kurve, die das exakte Dritteln eines Winkels mit Zirkel und Lineal ermöglicht. Die Existenz beziehungsweise Konstruierbarkeit der Kurve mit anderen Mitteln als Zirkel und Lineal ist hierbei gegeben und unter Zuhilfenahme dieser Kurve als einziges zusätzliches Hilfsmittel ist es dann möglich, einen Winkel zu dritteln. Im Gegensatz zur reinen Konstruktion mit Zirkel und Lineal können Punkte so nicht nur durch den Schnitt von Geraden und Kreisen konstruiert werden, sondern auch durch den Schnitt von Geraden und Kreisen mit der gegebenen Kurve. Die Gesamtheit der Kurvenpunkte selbst ist dabei aber nicht mit Zirkel und Lineal konstruierbar, weshalb die Verwendung einer solchen Kurve eine Verletzung der klassischen Regeln zur Winkeldreiteilung darstellt.

Dreiteilung unterschiedlicher Winkel mithilfe einer einzigen Hyperbel

Dreiteilung des Winkels mithilfe der Trisektrix des Hippias,[8] die gedrittelte Strecke liefert den Kurvenabschnitt der Trisektrix (rot)
Dreiteilung des Winkels mithilfe einer einzigen Hyperbel
Hyperbelgleichung
die Kreissehne (grün) ist konstant

Hauptartikel: Hyperbel, Hyperbel als Trisektrix

Im Jahr 1902 veröffentlichte K. Matter den Aufsatz Zur Trisektion des Winkels. Darin zeigt er eine Methode, die es ermöglicht, mit nur einer Hyperbel unterschiedliche Winkel zu dritteln.[37]

„Eine von der […] allgemeinen Methode etwas abweichende, hübsche und einfache geometrische Lösung unseres Problems der Dreiteilung des Winkels ist die folgende, bei welcher die Konstruktion einer einzigen Hyperbel in Verbindung mit einem Kreis nötig wird.“

K. Matter: ZOBODAT[38][39]

Auswahl der bekanntesten Trisektrizes

Dreiteilung des Winkels mit Origami

Während die Dreiteilung des Winkels mit den klassischen Instrumenten der Geometrie nicht möglich ist, kann die Aufgabe mit der Papierfalttechnik Origami gelöst werden.[41] Verwendet wird hierfür ein rechteckiges oder quadratisches Blatt Papier. Für die Dreiteilung eines Winkels bedarf es sechs Faltungen des Blattes.

Zuerst wird das Blatt in der Mitte gefaltet (siehe Bild 1), dabei ergeben sich an den beiden Blattkanten die Punkte und Alternativ kann auch mit einer frei wählbaren Länge der Strecke festgelegt werden. Es folgt die Falte sie halbiert die Strecke Punkt wird nun nach Belieben (siehe Bild 2) auf der Strecke bestimmt und im Anschluss das Blatt von bis gefaltet. Damit ergibt sich der Winkel am Scheitel

Jetzt folgt die maßgebende vierte Faltung (siehe Bild 3) zur Dreiteilung des Winkels , indem man zuerst die Ecke auf die Falte und den Punkt auf die Falte legt. Nach dem Markieren des Punktes auf das Blatt, wird die Ecke zurückgebogen und der Schnittpunkt markiert – entstanden durch die vierte Falte mit – das Blatt hat so wieder seine rechteckige Form.

Abschließend (siehe Bild 4) noch die Falte von durch sowie die von durch knicken. Die Faltlinien und teilen den Winkel in drei (exakt) gleiche Teile.

Dreiteilung des Winkels mithilfe eines flexiblen Lineals

In dieser Methode wird auf einer zylindrischen Mantelfläche eine Schraubenlinie (Helix) aufgetragen, die von einer dreidimensionalen Linie an vier Stellen geschnitten wird. Die beiden inneren Schnittpunkte dritteln den Winkel, der durch die beiden äußeren vorgegeben ist.[42] Bei genauer Betrachtung sieht man die Ähnlichkeit der Konstruktion mit der Methode Quadratrix des Hippias. Als sogenannte zusätzliche Konstruktionsmittel zu Zirkel und Lineal werden ein zylindrischer Körper, ein flexibles Lineal (z. B. Rollbandmaß) und alternativ z. B. ein Anschlagwinkel verwendet.

Konstruktionsbeschreibung

Zuerst wird vom Kreismittelpunkt des Zylinders der Winkelschenkel eingezeichnet (siehe Bild 1) und der zu drittelnde Winkel mittels des Winkelschenkels bestimmt. Es folgt das Einzeichnen der beiden (roten) Strecken und auf die Mantelfläche mithilfe des flexiblen Lineals oder alternativ z. B. mithilfe eines (rechtwinkligen) Anschlagwinkels.

Es geht weiter mit dem Auftragen der Schraubenlinie (grün) auf die zylindrische Mantelfläche (siehe Bild 2). Das flexible Lineal wird an die Zylinderkante gelegt und fixiert. Es folgen fünf Wicklungen mit gleicher Ganghöhe sie entspricht der Breite des Lineals. Das Einzeichnen der Schraubenlinie geschieht bei schrittweisem Abwickeln, jeweils an der freien Kante des Lineals. Nun wird der Schnittpunkt mit der ersten Wicklung der Schraubenlinie und mit der vierten Wicklung markiert.

Das flexible Lineal wird nun so auf die zylindrische Mantelfläche (siehe Bild 3) gesetzt, dass die Kante des Lineals (hellblau) durch die Punkte und verläuft, dabei werden die Schnittpunkte und auf der Schraubenlinie markiert. In diesem Fall ist diese Linie ― ebenfalls eine Schraubenlinie mit einer sehr großen Ganghöhe ― die kürzeste Verbindung der beiden Punkte und [42] Abschließend werden mithilfe des flexiblen Lineals, oder alternativ z. B. mithilfe eines Anschlagwinkels, die Strecken und sowie und eingetragen.

Wegen ist somit der Winkel exakt dreigeteilt.

Näherungsverfahren

Albrecht Dürers Näherung der Dreiteilung

Dreiteilung des Winkels, eine Näherungskonstruktion nach Dürer

Karl Hunrath veröffentlichte 1906 eine Untersuchung zu Dürers Näherungslösung der Winkeldreiteilung aus dem Jahr 1525[43] in der Zeitschrift Heidelberger Texte zur Mathematikgeschichte.[21]

Konstruktionsbeschreibung

In einem gegebenen Kreissektor mit Mittelpunkt und einem Mittelpunktswinkel größer wird die Sehne in und gedrittelt. Es folgt das Errichten der beiden Senkrechten auf in und , dabei ergeben sich die Schnittpunkte bzw. mit dem Kreisbogen. Nun wird ein Kreisbogen mit dem Radius ab und ein zweiter mit dem Radius ab gezogen bis sie die Sehne in bzw. in schneiden. Nach dem Dritteln der Strecke nahe dem Punkt und der Strecke nahe dem Punkt ergeben sich die Schnittpunkte bzw. Die Projektion der Punkte und auf den Kreisbogen liefert die gesuchten Punkte und Die Verbindungslinien (rot) mit sowie und teilen den Mittelpunktswinkel in annähernd drei gleiche Teile.

Dieses Ergebnis wird mit zwei Iterationsschritten erreicht. Nach der ersten Iteration ergeben sich die Winkel und

Die eingezeichneten Punkte und sowie die mittige Strecke werden für die Konstruktion nicht benötigt, sie dienen ausschließlich dem von Hunrath ausführlich erörterten Beweis.[44]

Fehlerbetrachtung

Dürers Näherungslösung zeigt bei Winkeln nur sehr geringe absolute Fehler [45]

Dreiteilung des Winkels nach Dürer
absoluten Fehler des Winkels
Winkel Winkel Winkel

Näherung durch iterative Winkelhalbierung

Dieses weniger effiziente, aber viel einfachere Verfahren verwendet die geometrische Reihe[46]

Beispiel Winkel nach neun Iterationen

Es ist zu beachten, dass die folgende Formel gilt:

Es gibt damit auch einen indirekten Zusammenhang mit der Darstellung im Binärsystem.

Näherung für Winkelweiten größer 0° bis 90°

Im Jahr 2011 sandte Chris Alberts eine außerordentlich gute Näherung einer Winkeldreiteilung an Rouben Rostamian (University of Maryland, Baltimore County).

Rostamian hat die Konstruktion von Alberts umformuliert und neu geordnet, aber die Unterschiede zum Original sind, so sagt er, nur kosmetisch.[47] Zu Beginn der Konstruktionsbeschreibung verweist er auf eine Erläuterung („Explanation here“), in der er auch die Gründe aufzeigt, weshalb von dieser Konstruktion keine Bilder zu sehen sind. Nichtsdestotrotz ist die im Folgenden dargestellte Konstruktion allein mithilfe Rostamians Beschreibung machbar.

Näherungskonstruktion für Winkel größer 0° bis 90°
Animation mit Schrittgrößen ca. 3°, aus Gründen der Übersichtlichkeit sind die Punkte ohne Beschriftung

Konstruktion

(Übersetzung)

Betrachte den Kreisbogen auf dem Kreis , der in zentriert ist (siehe Bild). Angenommen, der Winkel liegt zwischen und Grad, dann gehe folgendermaßen vor, um zu teilen:[47]

  1. Zeichne den Kreis um mit einem Radius die Schnittpunkte mit den Strecken bzw. sind bzw.
  2. Ziehe den Kreis (grün dargestellt) um durch den Punkt
  3. Es sei der Mittelpunkt der Strecke Zeichne eine Linie ab parallel zu durch die Kreislinie von bis zum Kreis die Schnittpunkte sind bzw.
  4. Es sei der Mittelpunkt der Strecke Ziehe eine Linie ab durch bis sie den Kreis in schneidet.
  5. Zeichne eine Linie ab parallel zu und wähle den Punkt darauf so, dass ist.
  6. Verlängere die Strecke bis sie den Kreis in schneidet.
  7. Ziehe die Linie und verlängere sie, bis sie den Kreis in schneidet.
Hinweis: Sieht man sich die Zeichnung genau an, ist zu erkennen, dass sich die Strecken und nicht überdecken, d. h. nicht kollinear sind.
  1. Es sei diagonal gegenüber dem Punkt im Kreis Ziehe eine Linie ab parallel zu und wähle den Punkt darauf so, dass der Abstand ist.
Hinweis: Die Strecke ist keine Verlängerung der Strecke
  1. Verlängere die Strecke bis sie den Kreis in schneidet.
  2. Spiegle an der Strecke um den Punkt zu erhalten.

Der Winkel ist nahezu gleich einem Drittel des Winkels

Fehleranalyse

Rostamian führte eine Fehleranalyse durch, u. a. mit folgenden Ergebnissen: Die obigen Konstruktionsschritte (1. – 10.) beinhalten drei Stufen der Näherungsgrade, d. h. drei unterschiedliche Fehlergrößen im Bereich zwischen und :

  • Stufe 1: Nach dem 5. Schritt ist die Differenz des Winkels zu einem exakt gedrittelten Winkel max.
  • Stufe 2: Nach dem 7. Schritt ist die Differenz des Winkels zu einem exakt gedrittelten Winkel nur noch max.
  • Stufe 3: Nach dem 10. Schritt hat der Winkel zu einem exakt gedrittelten Winkel den hervorragenden kleinen Differenzwert von max. [47]

Die dargestellte Konstruktion wurde mit der Dynamische-Geometrie-Software (DGS) GeoGebra angefertigt; darin werden in diesem Fall die Winkelgrade mit signifikanten dreizehn Nachkommastellen angezeigt. Die sehr kleinen Fehler des Winkels sprich, die Differenzwerte aus werden deshalb von GeoGebra stets mit angezeigt.

Verdeutlichung des absoluten Fehlers

Der Differenzwert von max. entspricht einem absoluten Fehler der – nicht eingezeichneten – Sehne der sich wie folgt ergibt:

Anschaulich: Hätten die Winkelschenkel die Länge gleich 1 Billion km (das Licht bräuchte für diese Strecke fast 39 Tage), wäre der absolute Fehler der Sehne ca. 2,32 mm.

Anwendungen

Eine kubische Gleichung mit reellen Koeffizienten kann genau dann geometrisch mit Zirkel, Lineal und einem Winkeldreiteiler gelöst (d. h. deren Lösungen konstruiert) werden, wenn sie drei reelle Lösungen hat. Dabei werden die Koeffizienten des Polynoms als gegeben gesehen und bei der Konstruktion verwendet. Insbesondere kann die Kubikwurzel aus 2, die bei der Verdopplung des Würfels benötigt wird, nicht über diese Werkzeuge konstruiert werden, da die Gleichung nicht ausschließlich reelle Lösungen besitzt.[48]

Ein regelmäßiges Vieleck mit Seiten lässt sich mit Lineal, Zirkel und Winkeldreiteiler konstruieren genau dann, wenn mit paarweise verschiedenen Fermatschen Primzahlen größer als 3 der Form ,[49] vgl. dazu auch Pierpont-Primzahl.

Mithilfe der kubische Gleichung des Siebenecks wird im Folgenden exemplarisch erläutert, wie damit der Kosinus des Winkels gefunden wird, der mithilfe eines sogenannten zusätzlichen Hilfsmittels (z. B. Tomahawk) gedrittelt werden kann.

Das Siebenecks hat die kubische Gleichung[50]

Setzt man ergibt sich , als eine Lösung von

Durch Einsetzen von

vereinfacht es sich zu

schließlich erhält man den Kosinus des Winkels, der gedrittelt werden kann:

.

Im Folgenden wird am Beispiel Siebeneck beschrieben, wie die kubische Gleichung

ermittelt wird. Es beginnt mit dem Zeichnen eines regelmäßigen Siebenecks.[51]

Konstruktionsbeschreibung

Siebeneck, Konstruktionsskizze für die Ermittlung des Winkels der mit einem zusätzlichen Hilfsmittel gedrittelt werden kann
  1. Umkreis des Siebenecks mit dem Radius um den Nullpunkt eines kartesischen Koordinatensystems.
  2. Markieren der Punkte und
  3. Ein Kreisbogen mit Radius schneidet die -Achse in und die Strecke ist die Seite eines gleichseitigen Dreiecks mit Umkreisradius
  4. Verbindung der Punkte mit und mit der Winkel entspricht
  5. Bogen um mit Radius
  6. Dreiteilung des Winkels mithilfe z. B. eines Tomahawks, ergibt Schnittpunkt
  7. Parallele zu durch ergibt die Schnittpunkte und und sind Eckpunkte des – nicht eingezeichneten – regelmäßigen Siebenecks

Nachweis der Konstruktion

Sei der Schnittpunkt der Strecke mit der -Achse. Aus der Konstruktion geht hervor, dass[51]

Die Konstruktion ist korrekt, wenn

  oder gleichwertig, wenn  

wobei die Normierung des Kosinus um den Faktor von der Wahl des Radius herrührt. Man muss also nur die Identität folgender Terme feststellen:

Um dies zu tun, sei

eine primitive siebte Einheitswurzel in .[51] Setze

dann ist

Somit ist eine Wurzel der kubischen Gleichung

Wie oben beschrieben, erhält man daraus den Kosinus des Winkels :

Satz von Morley

Satz von Morley, Konstruktionsskizze

Auch wenn es im ersten Moment den Anschein hat, der Satz von Morley wäre für die Dreiteilung eines beliebigen Winkels geeignet, dem ist nicht so.

In einem vorgegebenen Dreieck werden zuerst die Winkel an den Scheitelpunkten und gedrittelt. Dazu bedarf es eines zusätzlichen Hilfsmittels, z. B. einer Dynamische-Geometrie-Software (DGS). Die damit exakt erzeugten Winkeldreiteilenden (rot) liefern die Eckpunkte , und des Morley-Dreiecks.

Satz von Morley:

„Die drei Schnittpunkte der drei anliegenden Winkeldreiteilenden eines beliebigen Dreiecks bilden ein gleichseitiges Dreieck.“

Horst Hischer: Das Morley-Dreieck zwischen Anwendung und Spiel[52]

Literatur

Weblinks

Einzelnachweise

  1. Vladimir Matveev: Dreiteilung des Winkels. (PDF) Anwendung: Konstruktionen mit Zirkel und Lineal. Universität Jena, Oktober 2016, S. 30, abgerufen am 10. April 2021.
  2. Hans Walser: 5 Konstruierbarkeit, 5.1 Grad. Winkelmessung. 22. August 2013, abgerufen am 10. April 2021.
  3. Johann Cigler: 1. Der Hauptsatz der Galois–Theorie. Körper – Ringe – Gleichungen. In: univie.ac.at. Universität Wien, abgerufen am 26. März 2021.
  4. a b c Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 44.
  5. Markus Asper: 1. Die Anfänge: von Milet nach Athen. (PDF) Mathematik, Milieu, Text. Die frühgriechische(n) Mathematik(en) und ihr Umfeld. Sudhoffs Archiv. Zeitschrift für Wissenschaftsgeschichte, 2003, S. 13, abgerufen am 13. April 2021.
  6. A. Jackter: History of Mathematics. In: The Problem of Angle Trisection in Antiquity. Rutgers University Press, 2000, abgerufen am 27. November 2020.
  7. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 78.
  8. a b Horst Hischer: 1 Zusammenhang zwischen Quadratrix und Trisectrix. (PDF) Geschichte der Mathematik als didaktischer Aspekt(2). Lösung klassischer Probleme. In: horst.hischer.de. 1994, S. 279, abgerufen am 31. März 2021.
  9. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 70.
  10. K. Matter: Zur Trisektion des Winkels Fig. b. In: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft. Band 25, 1902, S. 22 ff. (zobodat.at [PDF] [abgerufen am 1. April 2021]).
  11. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 46.
  12. K. Matter: Zur Trisektion des Winkels, s. letzter Absatz. In: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft. Band 25, 1902, S. 22 (zobodat.at [PDF] [abgerufen am 1. April 2021]).
  13. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 77.
  14. a b c Dietmar Herrmann: Die antike Mathematik; Eine Geschichte der griechischen Mathematik, ihrer Probleme und Lösungen, Springer-Verlag, 2013, S. 155, Pkt. 3. (eingeschränkte Vorschau in der Google-Buchsuche), abgerufen am 21. August 2020.
  15. a b Robert C. Yates: THE TRISECTION PROBLEM, 3. The Hyperbola. In: ERIC. National Council of Teachers of Mathematics, Inc., Washington, D.C., 1971, S. 32–33, abgerufen am 31. März 2021.
  16. Katharina Wieser: 5.2.6. Arabische Mathematiker mit Hyperbel-Neusis. Die drei klassischen mathematischen Probleme der Antike: Würfelverdopplung, Winkeldreiteilung und Kreisquadratur. Johannes Kepler Universität Linz, März 2013, S. 58, abgerufen am 7. April 2021.
  17. Katharina Wieser: 5.2.6. Arabische Mathematiker mit Hyperbel-Neusis. Die drei klassischen mathematischen Probleme der Antike: Würfelverdopplung, Winkeldreiteilung und Kreisquadratur. Johannes Kepler Universität Linz, März 2013, S. 59, abgerufen am 7. April 2021.
  18. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 179.
  19. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 180.
  20. F. Vogel: Über die Näherungskonstruktionen für die Dreiteilung eines Winkels. Zeitschr. f. Math. u. Naturwiss. Unterricht 62. Jhg., 1931, S. 145–155.
  21. a b Karl Hunrath: Albrecht Dürers annähernde Dreiteilung eines Kreisbogens. Bibliotheca Mathematica. Zeitschrift für Geschichte der mathematischen Wissenschaften. Universität Heidelberg, 1906, S. 120, abgerufen am 12. April 2021.
  22. Christoph Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer, 2010, S. 283.
  23. Jesper Lützen: Why was Wantzel overlooked for a century? The changing importance of an impossibility result, Historia Mathematica 36, 2009, S. 387.
  24. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie, Springer-Verlag, Dritte Auflage, 2010, S. 405.
  25. a b Pierre Wantzel: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas (= Journal de mathématiques pures et appliquées (Liouville’s Journal). Band 2). 1837, S. 366–372 (PDF).
  26. Craig Smorynski: History of Mathematics: A Supplement. Springer, 2007, ISBN 978-0-387-75480-2, S. 130 (google.com). Zur historischen Einordnung von Wantzels Beweis in die frühere Arbeit von Ruffini und Abel und zum zeitlichen Vergleich mit Galois.
  27. Jesper Lützen: Why was Wantzel overlooked for a century? The changing importance of an impossibility result, Historia Mathematica 36, 2009, S. 378–379.
  28. Jesper Lützen: Why was Wantzel overlooked for a century? The changing importance of an impossibility result, Historia Mathematica 36, 2009, S. 379.
  29. Jesper Lützen: Why was Wantzel overlooked for a century? The changing importance of an impossibility result, Historia Mathematica 36, 2009, S. 391.
  30. Hans Humenberger: Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung. In: Internat. Math. Nachrichten Nr. 219, 25–43. 2012, S. 38–40 (univie.ac.at [PDF; abgerufen am 14. November 2020]).
  31. a b Falko Lorenz: Algebra Volume I: Fields and Galois Theory, Springer, S. 52.
  32. K. Robin McLean: Trisecting angles with ruler and compasses, Mathematical Gazette. 92, S. 320–323.
  33. Underwood Dudley: What to do when the trisector comes. Missouri University of Science and Technology, 1983, abgerufen am 21. November 2020 (englisch). Siehe auch Mathematical Intelligencer, Band 5, 1983, Nr. 1, und in seinem Buch dazu.
  34. Hans Humenberger: 8 Konstruktionen mittels eines markierten Lineals und Papierfalten (Origami). Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung. Universität Wien, 2012, S. 41―42, abgerufen am 13. April 2021.
  35. Bodo v. Pape: 7.4 Dreiteilung mit dem Tomahawk in: Makro-Mathematik: Jenseits von Algebra und Analysis: Algorithmen, BoD – Books on Demand, 2016, ISBN 373579419X (eingeschränkte Vorschau in der Google-Buchsuche)
  36. a b c Ludwig Bieberbach: Zur Lehre von den kubischen Konstruktionen, Journal für die reine und angewandte Mathematik. H. Hasse und L. Schlesinger, Band 167, Walter de Gruyter, Berlin 1932, S. 142–146, DigiZeitschriften, Bild auf S. 144 abgerufen am 6. Juni 2018.
  37. K. Matter: Zur Trisektion des Winkels. In: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft. Band 25, 1902, S. 20 (zobodat.at [PDF] [abgerufen am 27. März 2021]).
  38. K. Matter: Zur Trisektion des Winkels. In: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft. Band 25, 1902, S. 21 ff. (zobodat.at [PDF] [abgerufen am 24. März 2021]).
  39. K. Matter: Zur Trisektion des Winkels. → Fig.a. Dreiteilung eines Winkels mit Hilfe einer Hyperbel. In: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft. Band 25, 1902 (zobodat.at [PDF] [abgerufen am 29. Juli 2020]).
  40. Justin Seago: The Maclaurin Trisectrix. CR College of the Redwoods, 8. Dezember 2008, abgerufen am 1. September 2020.
  41. Matthias Sebastian Konzett: 3.5.1.Lösung mittels Origamics. Unmöglich möglich? Universität Wien, 3. September 2012, S. 46 ff., abgerufen am 23. November 2020.
  42. a b Greg Blonder: Trisecting the angle with a straightedge. + plus. magazine, abgerufen am 9. April 2021 (englisch).
  43. Albrecht Dürer: Underweysung der messung mit dem zirckel un[d] richtscheyt, in Linien ebnen unnd gantzen corporen. Bayerische StaatsBibliothek, Digitale-Sammlungen, 1525, abgerufen am 12. April 2021.
  44. Karl Hunrath: Albrecht Dürers annähernde Dreiteilung eines Kreisbogens. Bibliotheca Mathematica. Zeitschrift für Geschichte der mathematischen Wissenschaften. Universität Heidelberg, 1906, S. 121, abgerufen am 11. April 2021.
  45. Karl Hunrath: Albrecht Dürers annähernde Dreiteilung eines Kreisbogens. Bibliotheca Mathematica. Zeitschrift für Geschichte der mathematischen Wissenschaften. Universität Heidelberg, 1906, S. 122 ff, abgerufen am 11. April 2021.
  46. Jim Loy: Trisection of an Angle. An analogy: (letzter Absatz). In: jimloy.com. Archiviert vom Original am 25. Februar 2012; abgerufen am 27. März 2021 (englisch).
  47. a b c Rouben Rostamian: An angle trisection. University of Maryland, Baltimore County, 23. März 2011, abgerufen am 3. Februar 2020.
  48. Andrew M. Gleason: Angle Trisection, the Heptagon and the Triskaidecadon, The American Mathematical Monthly, Vol. 95, Issue 3, S. 190.
  49. Andrew M. Gleason: Angle Trisection, the Heptagon and the Triskaidecadon, The American Mathematical Monthly, Vol. 95, Issue 3, S. 191.
  50. Andrew M. Gleason: Angle Trisection, the Heptagon, and the Triskaidecagon. (PDF) The American Mathematical Monthly. Florida Atlantic University, März 1988, S. 187, abgerufen am 6. April 2021 (englisch).
  51. a b c Andrew M. Gleason: Angle Trisection, the Heptagon, and the Triskaidecagon. (PDF) The American Mathematical Monthly. Florida Atlantic University, März 1988, S. 186, abgerufen am 6. April 2021 (englisch).
  52. Horst Hischer: 1.1.2 Das Morley-Dreieck zwischen Anwendung und Spiel. Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung: Struktur – Funktion – Zahl. Springer-Verlag, 13. Juni 2012, S. 2–4, abgerufen am 5. April 2021.
Dieser Artikel befindet sich in einer Auszeichnungskandidatur und wird neu bewertet, beteilige dich an der Diskussion!