Weierstraß-Substitution

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 18. Juni 2023 um 14:55 Uhr durch Christian1985 (Diskussion | Beiträge) (Die letzte Textänderung von 2001:A61:2715:E301:C053:EF0E:6677:84C9 wurde verworfen und die Version 210983607 von Dreiundsiebzig wiederhergestellt. Wikipedia ist für Wikipedia keine valide Quelle).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Die Weierstraß-Substitution (auch unter Halbwinkelmethode bekannt) ist eine Methode aus dem mathematischen Teilgebiet der Analysis. Sie ist eine Variante der Integration durch Substitution, die auf bestimmte Integranden mit trigonometrischen Funktionen angewendet werden kann. Benannt ist die Methode nach dem Mathematiker Karl Weierstraß, der sie entwickelte.[1]

Beschreibung der Substitution[Bearbeiten | Quelltext bearbeiten]

Seien zwei reelle Zahlen und eine rationale Funktion. Um ein Integral der Form

zu berechnen, kann die Substitution

für angewandt werden. Für die Funktionen Sinus und Kosinus ergeben sich dann die Substitutionen

und für das Differential gilt

.

Da sich die Funktionen Tangens , Kotangens , Sekans und Kosekans als Brüche mit Sinus und Kosinus schreiben lassen, kann auch auf diese trigonometrischen Funktionen die Weierstraß-Substitution angewandt werden. Die Substitutionen lauten

Alternativ kann ein Integral von der obigen Form auch auf funktionentheoretische Weise gelöst werden. Dabei wird das reelle Intervall in ein komplexes Gebiet transformiert und anschließend der Residuensatz angewendet.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Die Generalsubstitution ist geeignet, die trigonometrischen Funktionen bei der Berechnung des Integrals zu eliminieren, wie das folgende Beispiel zeigt.

Dieses Integral lässt sich nun mit einer weiteren Integration durch Substitution berechnen.

Herleitung[Bearbeiten | Quelltext bearbeiten]

In diesem Abschnitt werden die Substitutionsformeln für Sinus und Kosinus hergeleitet. Mit den Additionstheoremen erhält man:

.

Zusammen hat man die Darstellung oben für . Die Darstellung für erhält man wie folgt:

für ,
für .

Die Ableitung von nach ergibt sich mit:

.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Howard Anton, Irl Bivens, Stephen Davis: Calculus. 9. Auflage. John Wiley & Sons, Inc., 2009, ISBN 978-0-470-18345-8, S. 526–528.