Absolut stetige Funktion

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 25. Mai 2023 um 11:53 Uhr durch Wiki Gh! (Diskussion | Beiträge) (Abkürzung mit geschütztem Leerabstand).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

In der Analysis ist die absolute Stetigkeit einer Funktion eine Verschärfung der Eigenschaft der Stetigkeit. Der Begriff wurde 1905 von Giuseppe Vitali eingeführt[1][2] und erlaubt eine Charakterisierung von Lebesgue-Integralen.

Definition[Bearbeiten | Quelltext bearbeiten]

Es sei ein endliches reelles Intervall und eine komplexwertige Funktion auf .

Die Funktion heißt absolut stetig, falls es für jedes ein gibt, welches derart klein ist, dass für jede endliche Folge paarweise disjunkter Teilintervalle von , deren Gesamtlänge ist, gilt

Beziehung zu anderen Stetigkeitsbegriffen[Bearbeiten | Quelltext bearbeiten]

Absolut stetige Funktionen sind gleichmäßig stetig und damit insbesondere stetig. Die Umkehrung gilt nicht, so ist die Cantor-Funktion stetig, aber nicht absolut stetig. Andererseits ist jede Lipschitz-stetige Funktion auch absolut stetig.

Absolute Stetigkeit von Maßen[Bearbeiten | Quelltext bearbeiten]

Von besonderer Bedeutung für die Maßtheorie sind die reellwertigen absolut stetigen Funktionen. Es bezeichne das Lebesgue-Maß. Für monoton steigende reellwertige Funktionen sind folgende Eigenschaften äquivalent:

  1. Die Funktion ist absolut stetig auf .
  2. Die Funktion bildet -Nullmengen wieder auf Nullmengen ab, d. h. für alle messbare Mengen gilt .
  3. Die Funktion ist -fast überall differenzierbar, die Ableitungsfunktion ist integrierbar und für alle gilt .

Daraus folgt ein enger Zusammenhang zwischen den absolut stetigen Funktionen und den absolut stetigen Maßen, dieser wird durch die Verteilungsfunktionen vermittelt.

Ein Maß ist genau dann absolut stetig bzgl. , wenn jede Einschränkung der Verteilungsfunktion von auf ein endliches Intervall eine absolut stetige Funktion auf ist.

Zwei Maße nennt man äquivalent, wenn beide absolut stetig bezüglich einander sind

.

Lebesgue-Integrale[Bearbeiten | Quelltext bearbeiten]

Die absolut stetigen Funktionen finden auch Anwendung in der Integrationstheorie, sie dienen dort dazu den Fundamentalsatz der Analysis auf Lebesgue-Integrale auszudehnen. Jenseits der obigen Äquivalenz sind nämlich auch nicht-monotone absolut stetige Funktionen fast überall differenzierbar und es gilt . Außerdem ist schwach differenzierbar und die schwache Ableitung stimmt (fast überall) mit überein. Dies liefert tatsächlich eine Charakterisierung der Lebesgue-Integrierbarkeit, denn die folgende Umkehrung gilt ebenfalls für beliebige Funktionen:

Besitzt eine Funktion eine integrierbare Ableitungsfunktion und gilt für alle , dass , so ist notwendig absolut stetig auf .

Optimale Steuerung[Bearbeiten | Quelltext bearbeiten]

In der Theorie der optimalen Steuerungen wird gefordert, dass die Lösungstrajektorien absolut stetig sind.

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Giuseppe Vitali: Opere sull'analisi reale e complessa. Edizioni Cremonese, Bologna 1984
  2. Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin 2005, ISBN 3-540-21390-2, S. 281.