Attraktor

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 11. Dezember 2016 um 19:43 Uhr durch Drusus 0 (Diskussion | Beiträge) (→‎Mathematische Definition: Wortwahl Eigenschaft –> Bedingung). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Attraktor (lat. ad trahere „zu sich hin ziehen“) ist ein Begriff aus der Theorie dynamischer Systeme und beschreibt eine Untermenge eines Phasenraums (d. h. eine gewisse Anzahl von Zuständen), auf die sich ein dynamisches System im Laufe der Zeit zubewegt, und die unter der Dynamik dieses Systems nicht mehr verlassen wird. Das heißt, eine Menge von Variablen nähert sich im Laufe der Zeit (asymptotisch) einem bestimmten Wert, einer Kurve, oder komplexerem (also einer Region im n-dimensionalen Raum) und bleibt dann im weiteren Zeitverlauf in der Nähe dieses Attraktors. Ein Attraktor erscheint als klar erkennbare Struktur. Umgangssprachlich könnte man von einer Art „stabilen Zustands“ eines Systems sprechen (wobei auch periodisch, also wellenartig wiederkehrende Zustände oder andere erkennbare Muster gemeint sein können), also ein Zustand, auf das sich ein System hinbewegt. Das Gegenteil eines Attraktors wird Repellor oder negativer Attraktor genannt. Anwendung finden die Begriffe in der Physik und der Biologie.

Fachterminus

Beispiel: Lorenz-Attraktor Poisson Saturne

Die Menge aller Punkte des Phasenraums, die unter der Dynamik demselben Attraktor zustreben, heißt Attraktions- oder Einzugsgebiet dieses Attraktors.

Bekannte Beispiele sind Lorenz-Attraktor, Rössler-Attraktor und die Nullstellen einer differenzierbaren Funktion, welche Attraktoren des zugehörigen Newton-Verfahrens sind.

Dynamische Systeme werden oft als mathematische Modelle physikalischer oder anderer Vorgänge der realen Welt aufgestellt. Beispiele sind das Strömungsverhalten von Flüssigkeiten und Gasen, Bewegungen von Himmelskörpern unter gegenseitiger Beeinflussung durch die Gravitation, Populationsgrößen von Lebewesen unter Berücksichtigung der Räuber-Beute-Beziehung oder die Entwicklung wirtschaftlicher Kenngrößen unter Einfluss der Marktgesetze. Dynamische Systeme werden definiert durch die Beschreibung der Zustandsänderung in Abhängigkeit von der Zeit t. Für die mathematische Definition wird das reale System oft in stark vereinfachter Form betrachtet. Die Ursache dafür, dass sich hier das Langzeitverhalten des dynamischen Systems durch den globalen Attraktor beschreiben lässt, ist bei physikalischen und technischen Systemen oft Dissipation, insbesondere Reibung.

Man unterscheidet zwischen diskreten und kontinuierlichen dynamischen Systemen, je nachdem, ob die Zustandsänderung in festen zeitlichen Schritten () oder als kontinuierlicher Vorgang () definiert ist. Der Zustand wird durch beliebig viele Zustandsgrößen dargestellt, diese bilden die Dimensionen des Phasenraums. Jeder Zustand ist damit ein Punkt im Phasenraum, diskrete Systeme bilden Mengen von isolierten Punkten, kontinuierliche Systeme werden durch Linien (Trajektorien) repräsentiert.

Ein gemischtes System aus kontinuierlichen und diskreten Teilsystemen – mit dann kontinuierlich-diskreter Dynamik – wird auch als hybrides dynamisches System bezeichnet. Beispiele solcher strukturvariabler Dynamiken finden sich in der Verfahrenstechnik (bspw. Dosiervorlagesysteme). Die mathematische Beschreibung erfolgt durch hybride Modelle bspw. durch schaltende Differentialgleichungen. Die Trajektorien im Phasenraum sind i.allg. nicht stetig (es zeigen sich „Knicke“ und Sprungstellen bei den Trajektorien).

Bei der Untersuchung dynamischer Systeme interessiert man sich vor allem für das Verhalten für bei einem bestimmten Anfangszustand. Der Grenzwert in diesem Fall wird als Attraktor bezeichnet. Typische und häufige Beispiele von Attraktoren sind:

  • asymptotisch stabile Fixpunkte: Das System nähert sich immer stärker einem bestimmten Endzustand an, in dem die Dynamik zum Erliegen kommt, es entsteht ein statisches System. Typisches Beispiel eines solchen Systems ist ein gedämpftes Pendel, das sich dem Ruhezustand im tiefsten Punkt annähert.
  • (asymptotisch) stabile Grenzzyklen: Der Endzustand ist die Abfolge immer der gleichen Zustände, die periodisch durchlaufen werden (periodische Orbits). Ein Beispiel dafür ist die Simulation der Räuber-Beute-Beziehung, die für bestimmte Parameter der Rückkoppelung auf ein periodisches Ansteigen und Sinken der Populationsgrößen hinausläuft.

Für ein hybrides dynamisches System mit chaotischer Dynamik konnte im die Oberfläche eines n-Simplex als Attraktor identifiziert werden. [1]

  • (asymptotisch stabile) Grenztori: Treten mehrere miteinander inkommensurable Frequenzen auf, so ist die Trajektorie nicht geschlossen, und der Attraktor ist ein Grenztorus, der von der Trajektorie asymptotisch vollständig ausgefüllt wird. Die zu diesem Attraktor korrespondierende Zeitreihe ist quasiperiodisch, es gibt keine echte Periode, aber das Frequenzspektrum besteht aus scharfen Linien.

Diese Beispiele sind Attraktoren, die im Phasenraum eine ganzzahlige Dimension besitzen. Die Existenz von Attraktoren mit komplizierterer Struktur war zwar schon länger bekannt, man betrachtete sie aber zunächst als instabile Sonderfälle, deren Auftreten nur bei bestimmter Wahl des Ausgangszustands und der Systemparameter beobachtet wird. Dies änderte sich mit der Definition eines neuen, speziellen Typs von Attraktor:

  • Seltsamer Attraktor: In seinem Endzustand zeigt das System häufig ein chaotisches Verhalten (es gibt jedoch auch Ausnahmen, z. B. quasiperiodisch angetriebene nichtlineare Systeme). Der seltsame Attraktor lässt sich nicht in einer geschlossenen geometrischen Form beschreiben und besitzt keine ganzzahlige Dimension. Attraktoren nichtlinearer dynamischer Systeme weisen dann eine fraktale Struktur auf. Wichtiges Merkmal ist das chaotische Verhalten, d. h. jede noch so geringe Änderung des Anfangszustands führt im weiteren Verlauf zu signifikanten Zustandsänderungen. Prominentestes Beispiel ist der Lorenz-Attraktor, der bei der Modellierung von Luftströmungen in der Atmosphäre entdeckt wurde.

Mathematische Definition

Formal betrachte man ein dynamisches System bestehend aus einem topologischen Raum und einer Transformation , wobei ein linear geordnetes Monoid ist wie oder und normalerweise stetig oder mindestens messbar ist (oder mindestens wird verlangt, dass stetig/messbar ist für jedes ) und erfüllt

für alle »Zeiten«  und Punkte .

Definition 1. Eine Teilmenge heißt dann vorwärts invariant, wenn

M. a. W. sobald ein Punkt in einen Attraktor gelangt, entkommt er der Teilmenge nicht.

Definition 2. Unter dem Sammelbecken einer Teilmenge versteht man die Menge

wobei die Menge der Umgebungen von ist. Mit Worten ist ein Punkt, , in genau dann, wenn für alle Umgebungen von dieser Punkt ab einem Zeitpunkt sich immer in dieser Umgebung aufhält.

Bemerkung. Im Falle eines metrisierten Raums ist diese Definition äquivalent zu

solange kompakt ist.

Bemerkung. Angenommen, der Raum sei metrisierbar und sei kompakt. Aus der Definition eines Sammelbeckens geht hervor, dass vorwärts invariant ist und . Manche Autoren definieren das Sammelbecken als die (offene) Menge mit diesen beiden Eigenschaften.

Definition 3. Unter einem Attraktor versteht man eine Teilmenge , die den folgenden Bedingungen genügt

1. ist vorwärts invariant;
2. Das Sammelbecken ist eine Umgebung von ;
3. ist eine minimale nicht leere Teilmenge von mit Bedingungen 1 und 2.

Bemerkung. Bedingung 1 erfordert eine gewisse Stabilität des Attraktors. Daraus folgt offensichtlich, dass . Anhand Bedingung 2 wird weiterhin verlangt, dass und bedeutet u. a., jeder Punkt in einer gewissen Nähe von nähere sich dem Attraktor beliebig. Manche Autoren lassen Bedingung 2 weg.[2] Bedingung 3 erfordert, dass der Attraktor nicht in weitere Komponenten zerlegt werden kann (ansonsten wäre bspw. der ganze Raum trivialerweise ein Attraktor).

Quellen

  1. T. Schürmann und I. Hoffmann: The entropy of strange billiards inside n-simplexes. In: J. Phys. Band A28, 1995, S. 5033ff. arxiv:nlin/0208048
  2. Milnor, J. (1985). "On the Concept of Attractor." Comm. Math. Phys 99: 177–195.

Literatur

  • G. Jetschke: Mathematik der Selbstorganisation. Harri-Deutsch-Verlag, Frankfurt/Main, 1989
  • T. Schürmann und I. Hoffmann: The entropy of strange billiards inside n-simplexes. In: J. Phys. Band A28, 1995, S. 5033ff. arxiv:nlin/0208048

Weblinks

Commons: Attractors – Sammlung von Bildern, Videos und Audiodateien